umm-maybe's picture
Upload app.py
d5f5ad4
raw
history blame
1.84 kB
import gradio as gr
from transformers import AutoProcessor, BlipForConditionalGeneration
# from transformers import AutoProcessor, AutoTokenizer, AutoImageProcessor, AutoModelForCausalLM, BlipForConditionalGeneration, Blip2ForConditionalGeneration, VisionEncoderDecoderModel
import torch
blip_processor_large = AutoProcessor.from_pretrained("umm-maybe/image-generator-identifier")
blip_model_large = BlipForConditionalGeneration.from_pretrained("umm-maybe/image-generator-identifier")
device = "cuda" if torch.cuda.is_available() else "cpu"
blip_model_large.to(device)
def generate_caption(processor, model, image):
inputs = processor(images=image, return_tensors="pt").to(device)
generated_ids = model.generate(pixel_values=inputs.pixel_values, max_length=50)
generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
def generate_captions(image):
caption_blip_large = generate_caption(blip_processor_large, blip_model_large, image)
return caption_blip_large
examples = [["australia.jpg"], ["biden.png"], ["elon.jpg"], ["horns.jpg"], ["man.jpg"], ["nun.jpg"], ["painting.jpg"], ["pentagon.jpg"], ["pollock.jpg"], ["radcliffe.jpg"], ["split.jpg"], ["waves.jpg"], ["yeti.jpg"]]
title = "Generator Identification via Image Captioning"
description = "Gradio Demo to illustrate the use of a fine-tuned BLIP image captioning to identify synthetic images. To use it, simply upload your image and click 'submit', or click one of the examples to load them."
interface = gr.Interface(fn=generate_captions,
inputs="image",
outputs="textbox",
examples=examples,
title=title,
description=description)
interface.launch()