File size: 42,041 Bytes
cd44748
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
# Copyright (c) 2024 Microsoft Corporation.
# Licensed under the MIT License
import json
import os
import re
import unittest
from pathlib import Path
from typing import Any, cast
from unittest import mock

import pytest
import yaml
from pydantic import ValidationError

import graphrag.config.defaults as defs
from graphrag.config import (
    ApiKeyMissingError,
    AzureApiBaseMissingError,
    AzureDeploymentNameMissingError,
    CacheConfig,
    CacheConfigInput,
    CacheType,
    ChunkingConfig,
    ChunkingConfigInput,
    ClaimExtractionConfig,
    ClaimExtractionConfigInput,
    ClusterGraphConfig,
    ClusterGraphConfigInput,
    CommunityReportsConfig,
    CommunityReportsConfigInput,
    EmbedGraphConfig,
    EmbedGraphConfigInput,
    EntityExtractionConfig,
    EntityExtractionConfigInput,
    GlobalSearchConfig,
    GraphRagConfig,
    GraphRagConfigInput,
    InputConfig,
    InputConfigInput,
    InputFileType,
    InputType,
    LLMParameters,
    LLMParametersInput,
    LocalSearchConfig,
    ParallelizationParameters,
    ReportingConfig,
    ReportingConfigInput,
    ReportingType,
    SnapshotsConfig,
    SnapshotsConfigInput,
    StorageConfig,
    StorageConfigInput,
    StorageType,
    SummarizeDescriptionsConfig,
    SummarizeDescriptionsConfigInput,
    TextEmbeddingConfig,
    TextEmbeddingConfigInput,
    UmapConfig,
    UmapConfigInput,
    create_graphrag_config,
)
from graphrag.index import (
    PipelineConfig,
    PipelineCSVInputConfig,
    PipelineFileCacheConfig,
    PipelineFileReportingConfig,
    PipelineFileStorageConfig,
    PipelineInputConfig,
    PipelineTextInputConfig,
    PipelineWorkflowReference,
    create_pipeline_config,
)

current_dir = os.path.dirname(__file__)

ALL_ENV_VARS = {
    "GRAPHRAG_API_BASE": "http://some/base",
    "GRAPHRAG_API_KEY": "test",
    "GRAPHRAG_API_ORGANIZATION": "test_org",
    "GRAPHRAG_API_PROXY": "http://some/proxy",
    "GRAPHRAG_API_VERSION": "v1234",
    "GRAPHRAG_ASYNC_MODE": "asyncio",
    "GRAPHRAG_CACHE_STORAGE_ACCOUNT_BLOB_URL": "cache_account_blob_url",
    "GRAPHRAG_CACHE_BASE_DIR": "/some/cache/dir",
    "GRAPHRAG_CACHE_CONNECTION_STRING": "test_cs1",
    "GRAPHRAG_CACHE_CONTAINER_NAME": "test_cn1",
    "GRAPHRAG_CACHE_TYPE": "blob",
    "GRAPHRAG_CHUNK_BY_COLUMNS": "a,b",
    "GRAPHRAG_CHUNK_OVERLAP": "12",
    "GRAPHRAG_CHUNK_SIZE": "500",
    "GRAPHRAG_CLAIM_EXTRACTION_ENABLED": "True",
    "GRAPHRAG_CLAIM_EXTRACTION_DESCRIPTION": "test 123",
    "GRAPHRAG_CLAIM_EXTRACTION_MAX_GLEANINGS": "5000",
    "GRAPHRAG_CLAIM_EXTRACTION_PROMPT_FILE": "tests/unit/config/prompt-a.txt",
    "GRAPHRAG_COMMUNITY_REPORTS_MAX_LENGTH": "23456",
    "GRAPHRAG_COMMUNITY_REPORTS_PROMPT_FILE": "tests/unit/config/prompt-b.txt",
    "GRAPHRAG_EMBEDDING_BATCH_MAX_TOKENS": "17",
    "GRAPHRAG_EMBEDDING_BATCH_SIZE": "1000000",
    "GRAPHRAG_EMBEDDING_CONCURRENT_REQUESTS": "12",
    "GRAPHRAG_EMBEDDING_DEPLOYMENT_NAME": "model-deployment-name",
    "GRAPHRAG_EMBEDDING_MAX_RETRIES": "3",
    "GRAPHRAG_EMBEDDING_MAX_RETRY_WAIT": "0.1123",
    "GRAPHRAG_EMBEDDING_MODEL": "text-embedding-2",
    "GRAPHRAG_EMBEDDING_REQUESTS_PER_MINUTE": "500",
    "GRAPHRAG_EMBEDDING_SKIP": "a1,b1,c1",
    "GRAPHRAG_EMBEDDING_SLEEP_ON_RATE_LIMIT_RECOMMENDATION": "False",
    "GRAPHRAG_EMBEDDING_TARGET": "all",
    "GRAPHRAG_EMBEDDING_THREAD_COUNT": "2345",
    "GRAPHRAG_EMBEDDING_THREAD_STAGGER": "0.456",
    "GRAPHRAG_EMBEDDING_TOKENS_PER_MINUTE": "7000",
    "GRAPHRAG_EMBEDDING_TYPE": "azure_openai_embedding",
    "GRAPHRAG_ENCODING_MODEL": "test123",
    "GRAPHRAG_INPUT_STORAGE_ACCOUNT_BLOB_URL": "input_account_blob_url",
    "GRAPHRAG_ENTITY_EXTRACTION_ENTITY_TYPES": "cat,dog,elephant",
    "GRAPHRAG_ENTITY_EXTRACTION_MAX_GLEANINGS": "112",
    "GRAPHRAG_ENTITY_EXTRACTION_PROMPT_FILE": "tests/unit/config/prompt-c.txt",
    "GRAPHRAG_INPUT_BASE_DIR": "/some/input/dir",
    "GRAPHRAG_INPUT_CONNECTION_STRING": "input_cs",
    "GRAPHRAG_INPUT_CONTAINER_NAME": "input_cn",
    "GRAPHRAG_INPUT_DOCUMENT_ATTRIBUTE_COLUMNS": "test1,test2",
    "GRAPHRAG_INPUT_ENCODING": "utf-16",
    "GRAPHRAG_INPUT_FILE_PATTERN": ".*\\test\\.txt$",
    "GRAPHRAG_INPUT_SOURCE_COLUMN": "test_source",
    "GRAPHRAG_INPUT_TYPE": "blob",
    "GRAPHRAG_INPUT_TEXT_COLUMN": "test_text",
    "GRAPHRAG_INPUT_TIMESTAMP_COLUMN": "test_timestamp",
    "GRAPHRAG_INPUT_TIMESTAMP_FORMAT": "test_format",
    "GRAPHRAG_INPUT_TITLE_COLUMN": "test_title",
    "GRAPHRAG_INPUT_FILE_TYPE": "text",
    "GRAPHRAG_LLM_CONCURRENT_REQUESTS": "12",
    "GRAPHRAG_LLM_DEPLOYMENT_NAME": "model-deployment-name-x",
    "GRAPHRAG_LLM_MAX_RETRIES": "312",
    "GRAPHRAG_LLM_MAX_RETRY_WAIT": "0.1122",
    "GRAPHRAG_LLM_MAX_TOKENS": "15000",
    "GRAPHRAG_LLM_MODEL_SUPPORTS_JSON": "true",
    "GRAPHRAG_LLM_MODEL": "test-llm",
    "GRAPHRAG_LLM_N": "1",
    "GRAPHRAG_LLM_REQUEST_TIMEOUT": "12.7",
    "GRAPHRAG_LLM_REQUESTS_PER_MINUTE": "900",
    "GRAPHRAG_LLM_SLEEP_ON_RATE_LIMIT_RECOMMENDATION": "False",
    "GRAPHRAG_LLM_THREAD_COUNT": "987",
    "GRAPHRAG_LLM_THREAD_STAGGER": "0.123",
    "GRAPHRAG_LLM_TOKENS_PER_MINUTE": "8000",
    "GRAPHRAG_LLM_TYPE": "azure_openai_chat",
    "GRAPHRAG_MAX_CLUSTER_SIZE": "123",
    "GRAPHRAG_NODE2VEC_ENABLED": "true",
    "GRAPHRAG_NODE2VEC_ITERATIONS": "878787",
    "GRAPHRAG_NODE2VEC_NUM_WALKS": "5000000",
    "GRAPHRAG_NODE2VEC_RANDOM_SEED": "010101",
    "GRAPHRAG_NODE2VEC_WALK_LENGTH": "555111",
    "GRAPHRAG_NODE2VEC_WINDOW_SIZE": "12345",
    "GRAPHRAG_REPORTING_STORAGE_ACCOUNT_BLOB_URL": "reporting_account_blob_url",
    "GRAPHRAG_REPORTING_BASE_DIR": "/some/reporting/dir",
    "GRAPHRAG_REPORTING_CONNECTION_STRING": "test_cs2",
    "GRAPHRAG_REPORTING_CONTAINER_NAME": "test_cn2",
    "GRAPHRAG_REPORTING_TYPE": "blob",
    "GRAPHRAG_SKIP_WORKFLOWS": "a,b,c",
    "GRAPHRAG_SNAPSHOT_GRAPHML": "true",
    "GRAPHRAG_SNAPSHOT_RAW_ENTITIES": "true",
    "GRAPHRAG_SNAPSHOT_TOP_LEVEL_NODES": "true",
    "GRAPHRAG_STORAGE_STORAGE_ACCOUNT_BLOB_URL": "storage_account_blob_url",
    "GRAPHRAG_STORAGE_BASE_DIR": "/some/storage/dir",
    "GRAPHRAG_STORAGE_CONNECTION_STRING": "test_cs",
    "GRAPHRAG_STORAGE_CONTAINER_NAME": "test_cn",
    "GRAPHRAG_STORAGE_TYPE": "blob",
    "GRAPHRAG_SUMMARIZE_DESCRIPTIONS_MAX_LENGTH": "12345",
    "GRAPHRAG_SUMMARIZE_DESCRIPTIONS_PROMPT_FILE": "tests/unit/config/prompt-d.txt",
    "GRAPHRAG_LLM_TEMPERATURE": "0.0",
    "GRAPHRAG_LLM_TOP_P": "1.0",
    "GRAPHRAG_UMAP_ENABLED": "true",
    "GRAPHRAG_LOCAL_SEARCH_TEXT_UNIT_PROP": "0.713",
    "GRAPHRAG_LOCAL_SEARCH_COMMUNITY_PROP": "0.1234",
    "GRAPHRAG_LOCAL_SEARCH_LLM_TEMPERATURE": "0.1",
    "GRAPHRAG_LOCAL_SEARCH_LLM_TOP_P": "0.9",
    "GRAPHRAG_LOCAL_SEARCH_LLM_N": "2",
    "GRAPHRAG_LOCAL_SEARCH_LLM_MAX_TOKENS": "12",
    "GRAPHRAG_LOCAL_SEARCH_TOP_K_RELATIONSHIPS": "15",
    "GRAPHRAG_LOCAL_SEARCH_TOP_K_ENTITIES": "14",
    "GRAPHRAG_LOCAL_SEARCH_CONVERSATION_HISTORY_MAX_TURNS": "2",
    "GRAPHRAG_LOCAL_SEARCH_MAX_TOKENS": "142435",
    "GRAPHRAG_GLOBAL_SEARCH_LLM_TEMPERATURE": "0.1",
    "GRAPHRAG_GLOBAL_SEARCH_LLM_TOP_P": "0.9",
    "GRAPHRAG_GLOBAL_SEARCH_LLM_N": "2",
    "GRAPHRAG_GLOBAL_SEARCH_MAX_TOKENS": "5123",
    "GRAPHRAG_GLOBAL_SEARCH_DATA_MAX_TOKENS": "123",
    "GRAPHRAG_GLOBAL_SEARCH_MAP_MAX_TOKENS": "4123",
    "GRAPHRAG_GLOBAL_SEARCH_CONCURRENCY": "7",
    "GRAPHRAG_GLOBAL_SEARCH_REDUCE_MAX_TOKENS": "15432",
}


class TestDefaultConfig(unittest.TestCase):
    def test_clear_warnings(self):
        """Just clearing unused import warnings"""
        assert CacheConfig is not None
        assert ChunkingConfig is not None
        assert ClaimExtractionConfig is not None
        assert ClusterGraphConfig is not None
        assert CommunityReportsConfig is not None
        assert EmbedGraphConfig is not None
        assert EntityExtractionConfig is not None
        assert GlobalSearchConfig is not None
        assert GraphRagConfig is not None
        assert InputConfig is not None
        assert LLMParameters is not None
        assert LocalSearchConfig is not None
        assert ParallelizationParameters is not None
        assert ReportingConfig is not None
        assert SnapshotsConfig is not None
        assert StorageConfig is not None
        assert SummarizeDescriptionsConfig is not None
        assert TextEmbeddingConfig is not None
        assert UmapConfig is not None
        assert PipelineConfig is not None
        assert PipelineFileReportingConfig is not None
        assert PipelineFileStorageConfig is not None
        assert PipelineInputConfig is not None
        assert PipelineFileCacheConfig is not None
        assert PipelineWorkflowReference is not None

    @mock.patch.dict(os.environ, {"OPENAI_API_KEY": "test"}, clear=True)
    def test_string_repr(self):
        # __str__ can be json loaded
        config = create_graphrag_config()
        string_repr = str(config)
        assert string_repr is not None
        assert json.loads(string_repr) is not None

        # __repr__ can be eval()'d
        repr_str = config.__repr__()
        # TODO: add __repr__ to datashaper enum
        repr_str = repr_str.replace("async_mode=<AsyncType.Threaded: 'threaded'>,", "")
        assert eval(repr_str) is not None

        # Pipeline config __str__ can be json loaded
        pipeline_config = create_pipeline_config(config)
        string_repr = str(pipeline_config)
        assert string_repr is not None
        assert json.loads(string_repr) is not None

        # Pipeline config __repr__ can be eval()'d
        repr_str = pipeline_config.__repr__()
        # TODO: add __repr__ to datashaper enum
        repr_str = repr_str.replace(
            "'async_mode': <AsyncType.Threaded: 'threaded'>,", ""
        )
        assert eval(repr_str) is not None

    @mock.patch.dict(os.environ, {}, clear=True)
    def test_default_config_with_no_env_vars_throws(self):
        with pytest.raises(ApiKeyMissingError):
            # This should throw an error because the API key is missing
            create_pipeline_config(create_graphrag_config())

    @mock.patch.dict(os.environ, {"GRAPHRAG_API_KEY": "test"}, clear=True)
    def test_default_config_with_api_key_passes(self):
        # doesn't throw
        config = create_pipeline_config(create_graphrag_config())
        assert config is not None

    @mock.patch.dict(os.environ, {"OPENAI_API_KEY": "test"}, clear=True)
    def test_default_config_with_oai_key_passes_envvar(self):
        # doesn't throw
        config = create_pipeline_config(create_graphrag_config())
        assert config is not None

    def test_default_config_with_oai_key_passes_obj(self):
        # doesn't throw
        config = create_pipeline_config(
            create_graphrag_config({"llm": {"api_key": "test"}})
        )
        assert config is not None

    @mock.patch.dict(
        os.environ,
        {"GRAPHRAG_API_KEY": "test", "GRAPHRAG_LLM_TYPE": "azure_openai_chat"},
        clear=True,
    )
    def test_throws_if_azure_is_used_without_api_base_envvar(self):
        with pytest.raises(AzureApiBaseMissingError):
            create_graphrag_config()

    @mock.patch.dict(os.environ, {"GRAPHRAG_API_KEY": "test"}, clear=True)
    def test_throws_if_azure_is_used_without_api_base_obj(self):
        with pytest.raises(AzureApiBaseMissingError):
            create_graphrag_config(
                GraphRagConfigInput(llm=LLMParametersInput(type="azure_openai_chat"))
            )

    @mock.patch.dict(
        os.environ,
        {
            "GRAPHRAG_API_KEY": "test",
            "GRAPHRAG_LLM_TYPE": "azure_openai_chat",
            "GRAPHRAG_API_BASE": "http://some/base",
        },
        clear=True,
    )
    def test_throws_if_azure_is_used_without_llm_deployment_name_envvar(self):
        with pytest.raises(AzureDeploymentNameMissingError):
            create_graphrag_config()

    @mock.patch.dict(os.environ, {"GRAPHRAG_API_KEY": "test"}, clear=True)
    def test_throws_if_azure_is_used_without_llm_deployment_name_obj(self):
        with pytest.raises(AzureDeploymentNameMissingError):
            create_graphrag_config(
                GraphRagConfigInput(
                    llm=LLMParametersInput(
                        type="azure_openai_chat", api_base="http://some/base"
                    )
                )
            )

    @mock.patch.dict(
        os.environ,
        {
            "GRAPHRAG_API_KEY": "test",
            "GRAPHRAG_EMBEDDING_TYPE": "azure_openai_embedding",
            "GRAPHRAG_EMBEDDING_DEPLOYMENT_NAME": "x",
        },
        clear=True,
    )
    def test_throws_if_azure_is_used_without_embedding_api_base_envvar(self):
        with pytest.raises(AzureApiBaseMissingError):
            create_graphrag_config()

    @mock.patch.dict(os.environ, {"GRAPHRAG_API_KEY": "test"}, clear=True)
    def test_throws_if_azure_is_used_without_embedding_api_base_obj(self):
        with pytest.raises(AzureApiBaseMissingError):
            create_graphrag_config(
                GraphRagConfigInput(
                    embeddings=TextEmbeddingConfigInput(
                        llm=LLMParametersInput(
                            type="azure_openai_embedding",
                            deployment_name="x",
                        )
                    ),
                )
            )

    @mock.patch.dict(
        os.environ,
        {
            "GRAPHRAG_API_KEY": "test",
            "GRAPHRAG_API_BASE": "http://some/base",
            "GRAPHRAG_LLM_DEPLOYMENT_NAME": "x",
            "GRAPHRAG_LLM_TYPE": "azure_openai_chat",
            "GRAPHRAG_EMBEDDING_TYPE": "azure_openai_embedding",
        },
        clear=True,
    )
    def test_throws_if_azure_is_used_without_embedding_deployment_name_envvar(self):
        with pytest.raises(AzureDeploymentNameMissingError):
            create_graphrag_config()

    @mock.patch.dict(os.environ, {"GRAPHRAG_API_KEY": "test"}, clear=True)
    def test_throws_if_azure_is_used_without_embedding_deployment_name_obj(self):
        with pytest.raises(AzureDeploymentNameMissingError):
            create_graphrag_config(
                GraphRagConfigInput(
                    llm=LLMParametersInput(
                        type="azure_openai_chat",
                        api_base="http://some/base",
                        deployment_name="model-deployment-name-x",
                    ),
                    embeddings=TextEmbeddingConfigInput(
                        llm=LLMParametersInput(
                            type="azure_openai_embedding",
                        )
                    ),
                )
            )

    @mock.patch.dict(os.environ, {"GRAPHRAG_API_KEY": "test"}, clear=True)
    def test_minimim_azure_config_object(self):
        config = create_graphrag_config(
            GraphRagConfigInput(
                llm=LLMParametersInput(
                    type="azure_openai_chat",
                    api_base="http://some/base",
                    deployment_name="model-deployment-name-x",
                ),
                embeddings=TextEmbeddingConfigInput(
                    llm=LLMParametersInput(
                        type="azure_openai_embedding",
                        deployment_name="model-deployment-name",
                    )
                ),
            )
        )
        assert config is not None

    @mock.patch.dict(
        os.environ,
        {
            "GRAPHRAG_API_KEY": "test",
            "GRAPHRAG_LLM_TYPE": "azure_openai_chat",
            "GRAPHRAG_LLM_DEPLOYMENT_NAME": "x",
        },
        clear=True,
    )
    def test_throws_if_azure_is_used_without_api_base(self):
        with pytest.raises(AzureApiBaseMissingError):
            create_graphrag_config()

    @mock.patch.dict(
        os.environ,
        {
            "GRAPHRAG_API_KEY": "test",
            "GRAPHRAG_LLM_TYPE": "azure_openai_chat",
            "GRAPHRAG_LLM_API_BASE": "http://some/base",
        },
        clear=True,
    )
    def test_throws_if_azure_is_used_without_llm_deployment_name(self):
        with pytest.raises(AzureDeploymentNameMissingError):
            create_graphrag_config()

    @mock.patch.dict(
        os.environ,
        {
            "GRAPHRAG_API_KEY": "test",
            "GRAPHRAG_LLM_TYPE": "azure_openai_chat",
            "GRAPHRAG_API_BASE": "http://some/base",
            "GRAPHRAG_LLM_DEPLOYMENT_NAME": "model-deployment-name-x",
            "GRAPHRAG_EMBEDDING_TYPE": "azure_openai_embedding",
        },
        clear=True,
    )
    def test_throws_if_azure_is_used_without_embedding_deployment_name(self):
        with pytest.raises(AzureDeploymentNameMissingError):
            create_graphrag_config()

    @mock.patch.dict(
        os.environ,
        {"GRAPHRAG_API_KEY": "test", "GRAPHRAG_INPUT_FILE_TYPE": "csv"},
        clear=True,
    )
    def test_csv_input_returns_correct_config(self):
        config = create_pipeline_config(create_graphrag_config(root_dir="/some/root"))
        assert config.root_dir == "/some/root"
        # Make sure the input is a CSV input
        assert isinstance(config.input, PipelineCSVInputConfig)
        assert (config.input.file_pattern or "") == ".*\\.csv$"  # type: ignore

    @mock.patch.dict(
        os.environ,
        {"GRAPHRAG_API_KEY": "test", "GRAPHRAG_INPUT_FILE_TYPE": "text"},
        clear=True,
    )
    def test_text_input_returns_correct_config(self):
        config = create_pipeline_config(create_graphrag_config(root_dir="."))
        assert isinstance(config.input, PipelineTextInputConfig)
        assert config.input is not None
        assert (config.input.file_pattern or "") == ".*\\.txt$"  # type: ignore

    def test_all_env_vars_is_accurate(self):
        env_var_docs_path = Path("docsite/posts/config/env_vars.md")
        query_docs_path = Path("docsite/posts/query/3-cli.md")

        env_var_docs = env_var_docs_path.read_text(encoding="utf-8")
        query_docs = query_docs_path.read_text(encoding="utf-8")

        def find_envvar_names(text) -> set[str]:
            pattern = r"`(GRAPHRAG_[^`]+)`"
            found = re.findall(pattern, text)
            found = {f for f in found if not f.endswith("_")}
            return {*found}

        graphrag_strings = find_envvar_names(env_var_docs) | find_envvar_names(
            query_docs
        )

        missing = {s for s in graphrag_strings if s not in ALL_ENV_VARS} - {
            # Remove configs covered by the base LLM connection configs
            "GRAPHRAG_LLM_API_KEY",
            "GRAPHRAG_LLM_API_BASE",
            "GRAPHRAG_LLM_API_VERSION",
            "GRAPHRAG_LLM_API_ORGANIZATION",
            "GRAPHRAG_LLM_API_PROXY",
            "GRAPHRAG_EMBEDDING_API_KEY",
            "GRAPHRAG_EMBEDDING_API_BASE",
            "GRAPHRAG_EMBEDDING_API_VERSION",
            "GRAPHRAG_EMBEDDING_API_ORGANIZATION",
            "GRAPHRAG_EMBEDDING_API_PROXY",
        }
        if missing:
            msg = f"{len(missing)} missing env vars: {missing}"
            print(msg)
            raise ValueError(msg)

    @mock.patch.dict(
        os.environ,
        {"GRAPHRAG_API_KEY": "test"},
        clear=True,
    )
    def test_malformed_input_dict_throws(self):
        with pytest.raises(ValidationError):
            create_graphrag_config(cast(Any, {"llm": 12}))

    @mock.patch.dict(
        os.environ,
        ALL_ENV_VARS,
        clear=True,
    )
    def test_create_parameters_from_env_vars(self) -> None:
        parameters = create_graphrag_config()
        assert parameters.async_mode == "asyncio"
        assert parameters.cache.storage_account_blob_url == "cache_account_blob_url"
        assert parameters.cache.base_dir == "/some/cache/dir"
        assert parameters.cache.connection_string == "test_cs1"
        assert parameters.cache.container_name == "test_cn1"
        assert parameters.cache.type == CacheType.blob
        assert parameters.chunks.group_by_columns == ["a", "b"]
        assert parameters.chunks.overlap == 12
        assert parameters.chunks.size == 500
        assert parameters.claim_extraction.enabled
        assert parameters.claim_extraction.description == "test 123"
        assert parameters.claim_extraction.max_gleanings == 5000
        assert parameters.claim_extraction.prompt == "tests/unit/config/prompt-a.txt"
        assert parameters.cluster_graph.max_cluster_size == 123
        assert parameters.community_reports.max_length == 23456
        assert parameters.community_reports.prompt == "tests/unit/config/prompt-b.txt"
        assert parameters.embed_graph.enabled
        assert parameters.embed_graph.iterations == 878787
        assert parameters.embed_graph.num_walks == 5_000_000
        assert parameters.embed_graph.random_seed == 10101
        assert parameters.embed_graph.walk_length == 555111
        assert parameters.embed_graph.window_size == 12345
        assert parameters.embeddings.batch_max_tokens == 17
        assert parameters.embeddings.batch_size == 1_000_000
        assert parameters.embeddings.llm.concurrent_requests == 12
        assert parameters.embeddings.llm.deployment_name == "model-deployment-name"
        assert parameters.embeddings.llm.max_retries == 3
        assert parameters.embeddings.llm.max_retry_wait == 0.1123
        assert parameters.embeddings.llm.model == "text-embedding-2"
        assert parameters.embeddings.llm.requests_per_minute == 500
        assert parameters.embeddings.llm.sleep_on_rate_limit_recommendation is False
        assert parameters.embeddings.llm.tokens_per_minute == 7000
        assert parameters.embeddings.llm.type == "azure_openai_embedding"
        assert parameters.embeddings.parallelization.num_threads == 2345
        assert parameters.embeddings.parallelization.stagger == 0.456
        assert parameters.embeddings.skip == ["a1", "b1", "c1"]
        assert parameters.embeddings.target == "all"
        assert parameters.encoding_model == "test123"
        assert parameters.entity_extraction.entity_types == ["cat", "dog", "elephant"]
        assert parameters.entity_extraction.llm.api_base == "http://some/base"
        assert parameters.entity_extraction.max_gleanings == 112
        assert parameters.entity_extraction.prompt == "tests/unit/config/prompt-c.txt"
        assert parameters.input.storage_account_blob_url == "input_account_blob_url"
        assert parameters.input.base_dir == "/some/input/dir"
        assert parameters.input.connection_string == "input_cs"
        assert parameters.input.container_name == "input_cn"
        assert parameters.input.document_attribute_columns == ["test1", "test2"]
        assert parameters.input.encoding == "utf-16"
        assert parameters.input.file_pattern == ".*\\test\\.txt$"
        assert parameters.input.file_type == InputFileType.text
        assert parameters.input.source_column == "test_source"
        assert parameters.input.text_column == "test_text"
        assert parameters.input.timestamp_column == "test_timestamp"
        assert parameters.input.timestamp_format == "test_format"
        assert parameters.input.title_column == "test_title"
        assert parameters.input.type == InputType.blob
        assert parameters.llm.api_base == "http://some/base"
        assert parameters.llm.api_key == "test"
        assert parameters.llm.api_version == "v1234"
        assert parameters.llm.concurrent_requests == 12
        assert parameters.llm.deployment_name == "model-deployment-name-x"
        assert parameters.llm.max_retries == 312
        assert parameters.llm.max_retry_wait == 0.1122
        assert parameters.llm.max_tokens == 15000
        assert parameters.llm.model == "test-llm"
        assert parameters.llm.model_supports_json
        assert parameters.llm.n == 1
        assert parameters.llm.organization == "test_org"
        assert parameters.llm.proxy == "http://some/proxy"
        assert parameters.llm.request_timeout == 12.7
        assert parameters.llm.requests_per_minute == 900
        assert parameters.llm.sleep_on_rate_limit_recommendation is False
        assert parameters.llm.temperature == 0.0
        assert parameters.llm.top_p == 1.0
        assert parameters.llm.tokens_per_minute == 8000
        assert parameters.llm.type == "azure_openai_chat"
        assert parameters.parallelization.num_threads == 987
        assert parameters.parallelization.stagger == 0.123
        assert (
            parameters.reporting.storage_account_blob_url
            == "reporting_account_blob_url"
        )
        assert parameters.reporting.base_dir == "/some/reporting/dir"
        assert parameters.reporting.connection_string == "test_cs2"
        assert parameters.reporting.container_name == "test_cn2"
        assert parameters.reporting.type == ReportingType.blob
        assert parameters.skip_workflows == ["a", "b", "c"]
        assert parameters.snapshots.graphml
        assert parameters.snapshots.raw_entities
        assert parameters.snapshots.top_level_nodes
        assert parameters.storage.storage_account_blob_url == "storage_account_blob_url"
        assert parameters.storage.base_dir == "/some/storage/dir"
        assert parameters.storage.connection_string == "test_cs"
        assert parameters.storage.container_name == "test_cn"
        assert parameters.storage.type == StorageType.blob
        assert parameters.summarize_descriptions.max_length == 12345
        assert (
            parameters.summarize_descriptions.prompt == "tests/unit/config/prompt-d.txt"
        )
        assert parameters.umap.enabled
        assert parameters.local_search.text_unit_prop == 0.713
        assert parameters.local_search.community_prop == 0.1234
        assert parameters.local_search.llm_max_tokens == 12
        assert parameters.local_search.top_k_relationships == 15
        assert parameters.local_search.conversation_history_max_turns == 2
        assert parameters.local_search.top_k_entities == 14
        assert parameters.local_search.temperature == 0.1
        assert parameters.local_search.top_p == 0.9
        assert parameters.local_search.n == 2
        assert parameters.local_search.max_tokens == 142435

        assert parameters.global_search.temperature == 0.1
        assert parameters.global_search.top_p == 0.9
        assert parameters.global_search.n == 2
        assert parameters.global_search.max_tokens == 5123
        assert parameters.global_search.data_max_tokens == 123
        assert parameters.global_search.map_max_tokens == 4123
        assert parameters.global_search.concurrency == 7
        assert parameters.global_search.reduce_max_tokens == 15432

    @mock.patch.dict(os.environ, {"API_KEY_X": "test"}, clear=True)
    def test_create_parameters(self) -> None:
        parameters = create_graphrag_config(
            GraphRagConfigInput(
                llm=LLMParametersInput(api_key="${API_KEY_X}", model="test-llm"),
                storage=StorageConfigInput(
                    type=StorageType.blob,
                    connection_string="test_cs",
                    container_name="test_cn",
                    base_dir="/some/storage/dir",
                    storage_account_blob_url="storage_account_blob_url",
                ),
                cache=CacheConfigInput(
                    type=CacheType.blob,
                    connection_string="test_cs1",
                    container_name="test_cn1",
                    base_dir="/some/cache/dir",
                    storage_account_blob_url="cache_account_blob_url",
                ),
                reporting=ReportingConfigInput(
                    type=ReportingType.blob,
                    connection_string="test_cs2",
                    container_name="test_cn2",
                    base_dir="/some/reporting/dir",
                    storage_account_blob_url="reporting_account_blob_url",
                ),
                input=InputConfigInput(
                    file_type=InputFileType.text,
                    file_encoding="utf-16",
                    document_attribute_columns=["test1", "test2"],
                    base_dir="/some/input/dir",
                    connection_string="input_cs",
                    container_name="input_cn",
                    file_pattern=".*\\test\\.txt$",
                    source_column="test_source",
                    text_column="test_text",
                    timestamp_column="test_timestamp",
                    timestamp_format="test_format",
                    title_column="test_title",
                    type="blob",
                    storage_account_blob_url="input_account_blob_url",
                ),
                embed_graph=EmbedGraphConfigInput(
                    enabled=True,
                    num_walks=5_000_000,
                    iterations=878787,
                    random_seed=10101,
                    walk_length=555111,
                ),
                embeddings=TextEmbeddingConfigInput(
                    batch_size=1_000_000,
                    batch_max_tokens=8000,
                    skip=["a1", "b1", "c1"],
                    llm=LLMParametersInput(model="text-embedding-2"),
                ),
                chunks=ChunkingConfigInput(
                    size=500, overlap=12, group_by_columns=["a", "b"]
                ),
                snapshots=SnapshotsConfigInput(
                    graphml=True,
                    raw_entities=True,
                    top_level_nodes=True,
                ),
                entity_extraction=EntityExtractionConfigInput(
                    max_gleanings=112,
                    entity_types=["cat", "dog", "elephant"],
                    prompt="entity_extraction_prompt_file.txt",
                ),
                summarize_descriptions=SummarizeDescriptionsConfigInput(
                    max_length=12345, prompt="summarize_prompt_file.txt"
                ),
                community_reports=CommunityReportsConfigInput(
                    max_length=23456,
                    prompt="community_report_prompt_file.txt",
                    max_input_length=12345,
                ),
                claim_extraction=ClaimExtractionConfigInput(
                    description="test 123",
                    max_gleanings=5000,
                    prompt="claim_extraction_prompt_file.txt",
                ),
                cluster_graph=ClusterGraphConfigInput(
                    max_cluster_size=123,
                ),
                umap=UmapConfigInput(enabled=True),
                encoding_model="test123",
                skip_workflows=["a", "b", "c"],
            ),
            ".",
        )

        assert parameters.cache.base_dir == "/some/cache/dir"
        assert parameters.cache.connection_string == "test_cs1"
        assert parameters.cache.container_name == "test_cn1"
        assert parameters.cache.type == CacheType.blob
        assert parameters.cache.storage_account_blob_url == "cache_account_blob_url"
        assert parameters.chunks.group_by_columns == ["a", "b"]
        assert parameters.chunks.overlap == 12
        assert parameters.chunks.size == 500
        assert parameters.claim_extraction.description == "test 123"
        assert parameters.claim_extraction.max_gleanings == 5000
        assert parameters.claim_extraction.prompt == "claim_extraction_prompt_file.txt"
        assert parameters.cluster_graph.max_cluster_size == 123
        assert parameters.community_reports.max_input_length == 12345
        assert parameters.community_reports.max_length == 23456
        assert parameters.community_reports.prompt == "community_report_prompt_file.txt"
        assert parameters.embed_graph.enabled
        assert parameters.embed_graph.iterations == 878787
        assert parameters.embed_graph.num_walks == 5_000_000
        assert parameters.embed_graph.random_seed == 10101
        assert parameters.embed_graph.walk_length == 555111
        assert parameters.embeddings.batch_max_tokens == 8000
        assert parameters.embeddings.batch_size == 1_000_000
        assert parameters.embeddings.llm.model == "text-embedding-2"
        assert parameters.embeddings.skip == ["a1", "b1", "c1"]
        assert parameters.encoding_model == "test123"
        assert parameters.entity_extraction.entity_types == ["cat", "dog", "elephant"]
        assert parameters.entity_extraction.max_gleanings == 112
        assert (
            parameters.entity_extraction.prompt == "entity_extraction_prompt_file.txt"
        )
        assert parameters.input.base_dir == "/some/input/dir"
        assert parameters.input.connection_string == "input_cs"
        assert parameters.input.container_name == "input_cn"
        assert parameters.input.document_attribute_columns == ["test1", "test2"]
        assert parameters.input.encoding == "utf-16"
        assert parameters.input.file_pattern == ".*\\test\\.txt$"
        assert parameters.input.source_column == "test_source"
        assert parameters.input.type == "blob"
        assert parameters.input.text_column == "test_text"
        assert parameters.input.timestamp_column == "test_timestamp"
        assert parameters.input.timestamp_format == "test_format"
        assert parameters.input.title_column == "test_title"
        assert parameters.input.file_type == InputFileType.text
        assert parameters.input.storage_account_blob_url == "input_account_blob_url"
        assert parameters.llm.api_key == "test"
        assert parameters.llm.model == "test-llm"
        assert parameters.reporting.base_dir == "/some/reporting/dir"
        assert parameters.reporting.connection_string == "test_cs2"
        assert parameters.reporting.container_name == "test_cn2"
        assert parameters.reporting.type == ReportingType.blob
        assert (
            parameters.reporting.storage_account_blob_url
            == "reporting_account_blob_url"
        )
        assert parameters.skip_workflows == ["a", "b", "c"]
        assert parameters.snapshots.graphml
        assert parameters.snapshots.raw_entities
        assert parameters.snapshots.top_level_nodes
        assert parameters.storage.base_dir == "/some/storage/dir"
        assert parameters.storage.connection_string == "test_cs"
        assert parameters.storage.container_name == "test_cn"
        assert parameters.storage.type == StorageType.blob
        assert parameters.storage.storage_account_blob_url == "storage_account_blob_url"
        assert parameters.summarize_descriptions.max_length == 12345
        assert parameters.summarize_descriptions.prompt == "summarize_prompt_file.txt"
        assert parameters.umap.enabled

    @mock.patch.dict(
        os.environ,
        {"GRAPHRAG_API_KEY": "test"},
        clear=True,
    )
    def test_default_values(self) -> None:
        parameters = create_graphrag_config()
        assert parameters.async_mode == defs.ASYNC_MODE
        assert parameters.cache.base_dir == defs.CACHE_BASE_DIR
        assert parameters.cache.type == defs.CACHE_TYPE
        assert parameters.cache.base_dir == defs.CACHE_BASE_DIR
        assert parameters.chunks.group_by_columns == defs.CHUNK_GROUP_BY_COLUMNS
        assert parameters.chunks.overlap == defs.CHUNK_OVERLAP
        assert parameters.chunks.size == defs.CHUNK_SIZE
        assert parameters.claim_extraction.description == defs.CLAIM_DESCRIPTION
        assert parameters.claim_extraction.max_gleanings == defs.CLAIM_MAX_GLEANINGS
        assert (
            parameters.community_reports.max_input_length
            == defs.COMMUNITY_REPORT_MAX_INPUT_LENGTH
        )
        assert (
            parameters.community_reports.max_length == defs.COMMUNITY_REPORT_MAX_LENGTH
        )
        assert parameters.embeddings.batch_max_tokens == defs.EMBEDDING_BATCH_MAX_TOKENS
        assert parameters.embeddings.batch_size == defs.EMBEDDING_BATCH_SIZE
        assert parameters.embeddings.llm.model == defs.EMBEDDING_MODEL
        assert parameters.embeddings.target == defs.EMBEDDING_TARGET
        assert parameters.embeddings.llm.type == defs.EMBEDDING_TYPE
        assert (
            parameters.embeddings.llm.requests_per_minute
            == defs.LLM_REQUESTS_PER_MINUTE
        )
        assert parameters.embeddings.llm.tokens_per_minute == defs.LLM_TOKENS_PER_MINUTE
        assert (
            parameters.embeddings.llm.sleep_on_rate_limit_recommendation
            == defs.LLM_SLEEP_ON_RATE_LIMIT_RECOMMENDATION
        )
        assert (
            parameters.entity_extraction.entity_types
            == defs.ENTITY_EXTRACTION_ENTITY_TYPES
        )
        assert (
            parameters.entity_extraction.max_gleanings
            == defs.ENTITY_EXTRACTION_MAX_GLEANINGS
        )
        assert parameters.encoding_model == defs.ENCODING_MODEL
        assert parameters.input.base_dir == defs.INPUT_BASE_DIR
        assert parameters.input.file_pattern == defs.INPUT_CSV_PATTERN
        assert parameters.input.encoding == defs.INPUT_FILE_ENCODING
        assert parameters.input.type == defs.INPUT_TYPE
        assert parameters.input.base_dir == defs.INPUT_BASE_DIR
        assert parameters.input.text_column == defs.INPUT_TEXT_COLUMN
        assert parameters.input.file_type == defs.INPUT_FILE_TYPE
        assert parameters.llm.concurrent_requests == defs.LLM_CONCURRENT_REQUESTS
        assert parameters.llm.max_retries == defs.LLM_MAX_RETRIES
        assert parameters.llm.max_retry_wait == defs.LLM_MAX_RETRY_WAIT
        assert parameters.llm.max_tokens == defs.LLM_MAX_TOKENS
        assert parameters.llm.model == defs.LLM_MODEL
        assert parameters.llm.request_timeout == defs.LLM_REQUEST_TIMEOUT
        assert parameters.llm.requests_per_minute == defs.LLM_REQUESTS_PER_MINUTE
        assert parameters.llm.tokens_per_minute == defs.LLM_TOKENS_PER_MINUTE
        assert (
            parameters.llm.sleep_on_rate_limit_recommendation
            == defs.LLM_SLEEP_ON_RATE_LIMIT_RECOMMENDATION
        )
        assert parameters.llm.type == defs.LLM_TYPE
        assert parameters.cluster_graph.max_cluster_size == defs.MAX_CLUSTER_SIZE
        assert parameters.embed_graph.enabled == defs.NODE2VEC_ENABLED
        assert parameters.embed_graph.iterations == defs.NODE2VEC_ITERATIONS
        assert parameters.embed_graph.num_walks == defs.NODE2VEC_NUM_WALKS
        assert parameters.embed_graph.random_seed == defs.NODE2VEC_RANDOM_SEED
        assert parameters.embed_graph.walk_length == defs.NODE2VEC_WALK_LENGTH
        assert parameters.embed_graph.window_size == defs.NODE2VEC_WINDOW_SIZE
        assert (
            parameters.parallelization.num_threads == defs.PARALLELIZATION_NUM_THREADS
        )
        assert parameters.parallelization.stagger == defs.PARALLELIZATION_STAGGER
        assert parameters.reporting.type == defs.REPORTING_TYPE
        assert parameters.reporting.base_dir == defs.REPORTING_BASE_DIR
        assert parameters.snapshots.graphml == defs.SNAPSHOTS_GRAPHML
        assert parameters.snapshots.raw_entities == defs.SNAPSHOTS_RAW_ENTITIES
        assert parameters.snapshots.top_level_nodes == defs.SNAPSHOTS_TOP_LEVEL_NODES
        assert parameters.storage.base_dir == defs.STORAGE_BASE_DIR
        assert parameters.storage.type == defs.STORAGE_TYPE
        assert parameters.umap.enabled == defs.UMAP_ENABLED

    @mock.patch.dict(
        os.environ,
        {"GRAPHRAG_API_KEY": "test"},
        clear=True,
    )
    def test_prompt_file_reading(self):
        config = create_graphrag_config({
            "entity_extraction": {"prompt": "tests/unit/config/prompt-a.txt"},
            "claim_extraction": {"prompt": "tests/unit/config/prompt-b.txt"},
            "community_reports": {"prompt": "tests/unit/config/prompt-c.txt"},
            "summarize_descriptions": {"prompt": "tests/unit/config/prompt-d.txt"},
        })
        strategy = config.entity_extraction.resolved_strategy(".", "abc123")
        assert strategy["extraction_prompt"] == "Hello, World! A"
        assert strategy["encoding_name"] == "abc123"

        strategy = config.claim_extraction.resolved_strategy(".")
        assert strategy["extraction_prompt"] == "Hello, World! B"

        strategy = config.community_reports.resolved_strategy(".")
        assert strategy["extraction_prompt"] == "Hello, World! C"

        strategy = config.summarize_descriptions.resolved_strategy(".")
        assert strategy["summarize_prompt"] == "Hello, World! D"


@mock.patch.dict(
    os.environ,
    {
        "PIPELINE_LLM_API_KEY": "test",
        "PIPELINE_LLM_API_BASE": "http://test",
        "PIPELINE_LLM_API_VERSION": "v1",
        "PIPELINE_LLM_MODEL": "test-llm",
        "PIPELINE_LLM_DEPLOYMENT_NAME": "test",
    },
    clear=True,
)
def test_yaml_load_e2e():
    config_dict = yaml.safe_load(
        """
input:
  file_type: text

llm:
  type: azure_openai_chat
  api_key: ${PIPELINE_LLM_API_KEY}
  api_base: ${PIPELINE_LLM_API_BASE}
  api_version: ${PIPELINE_LLM_API_VERSION}
  model: ${PIPELINE_LLM_MODEL}
  deployment_name: ${PIPELINE_LLM_DEPLOYMENT_NAME}
  model_supports_json: True
  tokens_per_minute: 80000
  requests_per_minute: 900
  thread_count: 50
  concurrent_requests: 25
"""
    )
    # create default configuration pipeline parameters from the custom settings
    model = config_dict
    parameters = create_graphrag_config(model, ".")

    assert parameters.llm.api_key == "test"
    assert parameters.llm.model == "test-llm"
    assert parameters.llm.api_base == "http://test"
    assert parameters.llm.api_version == "v1"
    assert parameters.llm.deployment_name == "test"

    # generate the pipeline from the default parameters
    pipeline_config = create_pipeline_config(parameters, True)

    config_str = pipeline_config.model_dump_json()
    assert "${PIPELINE_LLM_API_KEY}" not in config_str
    assert "${PIPELINE_LLM_API_BASE}" not in config_str
    assert "${PIPELINE_LLM_API_VERSION}" not in config_str
    assert "${PIPELINE_LLM_MODEL}" not in config_str
    assert "${PIPELINE_LLM_DEPLOYMENT_NAME}" not in config_str