ugaray96's picture
Refactor and improve model, app, and training components
0f734ea unverified
import logging
import os
import shutil
import time
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelEncoder
from tqdm import tqdm
from transformers import ViTFeatureExtractor, ViTModel
from transformers.modeling_outputs import SequenceClassifierOutput
from train import (
f1_score,
metric,
re_training,
)
data_path = os.environ.get("DATA_PATH", "./data")
logging.basicConfig(level=os.getenv("LOGGER_LEVEL", logging.WARNING))
logger = logging.getLogger(__name__)
class ViTForImageClassification(nn.Module):
@staticmethod
def get_device():
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
def __init__(self, model_name, num_labels=24, dropout=0.25, image_size=224):
logger.info("Loading model")
super(ViTForImageClassification, self).__init__()
self.vit = ViTModel.from_pretrained(model_name)
self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
self.feature_extractor.do_resize = True
self.feature_extractor.size = image_size
self.dropout = nn.Dropout(dropout)
self.classifier = nn.Linear(self.vit.config.hidden_size, num_labels)
self.num_labels = num_labels
self.label_encoder = LabelEncoder()
self.device = self.get_device()
logger.info(f"Using device: {self.device}")
self.model_name = model_name
# To device
self.vit.to(self.device)
self.to(self.device)
self.classifier.to(self.device)
logger.info("Model loaded")
def forward(self, pixel_values, labels):
logger.info("Forwarding")
pixel_values = pixel_values.to(self.device)
outputs = self.vit(pixel_values=pixel_values)
output = self.dropout(outputs.last_hidden_state[:, 0])
logits = self.classifier(output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def preprocess_image(self, images):
logger.info("Preprocessing images")
return self.feature_extractor(images, return_tensors="pt")
def predict(
self, images, batch_size=32, classes_names=True, return_probabilities=False
):
logger.info("Predicting")
if not isinstance(images, list):
images = [images]
classes_list = []
confidence_list = []
for bs in tqdm(
range(0, len(images), batch_size), desc="Preprocessing training images"
):
images_batch = [image for image in images[bs : bs + batch_size]]
images_batch = self.preprocess_image(images_batch)["pixel_values"]
sequence_classifier_output = self.forward(images_batch, None)
# Get max prob
probs = sequence_classifier_output.logits.softmax(dim=-1).tolist()
classes = np.argmax(probs, axis=1)
confidences = np.max(probs, axis=1)
classes_list.extend(classes)
confidence_list.extend(confidences)
if classes_names:
classes_list = self.label_encoder.inverse_transform(classes_list)
if return_probabilities:
return classes_list, confidence_list, probs
return classes_list, confidence_list
def save(self, path):
logger.info("Saving model")
os.makedirs(path, exist_ok=True)
torch.save(self.state_dict(), path + "/model.pt")
# Save label encoder
np.save(path + "/label_encoder.npy", self.label_encoder.classes_)
def load(self, path):
logger.info("Loading model")
# Load label encoder
# Check if label encoder and model exists
if not os.path.exists(path + "/label_encoder.npy") or not os.path.exists(
path + "/model.pt"
):
logger.warning("Label encoder or model not found")
return
self.label_encoder.classes_ = np.load(path + "/label_encoder.npy")
# Reload classifier layer
self.classifier = nn.Linear(
self.vit.config.hidden_size, len(self.label_encoder.classes_)
)
self.load_state_dict(torch.load(path + "/model.pt", map_location=self.device))
self.vit.to(self.device)
self.vit.eval()
self.to(self.device)
self.eval()
def evaluate(self, images, labels):
logger.info("Evaluating")
labels = self.label_encoder.transform(labels)
# Predict
y_pred, _ = self.predict(images, classes_names=False)
# Evaluate
metrics = metric.compute(predictions=y_pred, references=labels)
f1 = f1_score.compute(predictions=y_pred, references=labels, average="macro")
print(
classification_report(
labels,
y_pred,
labels=[i for i in range(len(self.label_encoder.classes_))],
target_names=self.label_encoder.classes_,
)
)
print(f"Accuracy: {metrics['accuracy']}")
print(f"F1: {f1}")
def partial_fit(self, images, labels, save_model_path="new_model", num_epochs=10):
logger.info("Partial fitting")
# Freeze ViT model but last layer
# params = [param for param in self.vit.parameters()]
# for param in params[:-1]:
# param.requires_grad = False
# Model in training mode
self.vit.train()
self.train()
re_training(images, labels, self, save_model_path, num_epochs)
self.load(save_model_path)
self.vit.eval()
self.eval()
self.evaluate(images, labels)
def __load_from_path(self, path, num_per_label=None):
images = []
labels = []
for label in os.listdir(path):
count = 0
label_folder_path = os.path.join(path, label)
for image_file in tqdm(
os.listdir(label_folder_path),
desc="Resizing images for label {}".format(label),
):
file_path = os.path.join(label_folder_path, image_file)
try:
image = Image.open(file_path)
image_shape = (
self.feature_extractor.size,
self.feature_extractor.size,
)
if image.size != image_shape:
image = image.resize(image_shape)
images.append(image.convert("RGB"))
labels.append(label)
count += 1
except Exception as e:
print(f"ERROR - Could not resize image {file_path} - {e}")
if num_per_label is not None and count >= num_per_label:
break
return images, labels
def retrain_from_path(
self,
path="./data/feedback",
num_per_label=None,
save_model_path="new_model",
remove_path=False,
num_epochs=10,
save_new_data=data_path + "/new_data",
):
logger.info("Retraining from path")
# Load path
images, labels = self.__load_from_path(path, num_per_label)
# Retrain
self.partial_fit(images, labels, save_model_path, num_epochs)
# Save new data
if save_new_data is not None:
logger.info("Saving new data")
for i, (image, label) in enumerate(zip(images, labels)):
label_path = os.path.join(save_new_data, label)
os.makedirs(label_path, exist_ok=True)
image.save(
os.path.join(label_path, str(int(time.time())) + f"_{i}.jpg")
)
# Remove path folder
if remove_path:
logger.info("Removing feedback path")
shutil.rmtree(path)
def evaluate_from_path(self, path, num_per_label=None):
logger.info("Evaluating from path")
# Load images
images, labels = self.__load_from_path(path, num_per_label)
# Evaluate
self.evaluate(images, labels)