File size: 8,550 Bytes
0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc 0f734ea 158f4dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import logging
import os
import shutil
import time
import numpy as np
import torch
import torch.nn as nn
from PIL import Image
from sklearn.metrics import classification_report
from sklearn.preprocessing import LabelEncoder
from tqdm import tqdm
from transformers import ViTFeatureExtractor, ViTModel
from transformers.modeling_outputs import SequenceClassifierOutput
from train import (
f1_score,
metric,
re_training,
)
data_path = os.environ.get("DATA_PATH", "./data")
logging.basicConfig(level=os.getenv("LOGGER_LEVEL", logging.WARNING))
logger = logging.getLogger(__name__)
class ViTForImageClassification(nn.Module):
@staticmethod
def get_device():
if torch.cuda.is_available():
return torch.device("cuda")
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
return torch.device("mps")
return torch.device("cpu")
def __init__(self, model_name, num_labels=24, dropout=0.25, image_size=224):
logger.info("Loading model")
super(ViTForImageClassification, self).__init__()
self.vit = ViTModel.from_pretrained(model_name)
self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
self.feature_extractor.do_resize = True
self.feature_extractor.size = image_size
self.dropout = nn.Dropout(dropout)
self.classifier = nn.Linear(self.vit.config.hidden_size, num_labels)
self.num_labels = num_labels
self.label_encoder = LabelEncoder()
self.device = self.get_device()
logger.info(f"Using device: {self.device}")
self.model_name = model_name
# To device
self.vit.to(self.device)
self.to(self.device)
self.classifier.to(self.device)
logger.info("Model loaded")
def forward(self, pixel_values, labels):
logger.info("Forwarding")
pixel_values = pixel_values.to(self.device)
outputs = self.vit(pixel_values=pixel_values)
output = self.dropout(outputs.last_hidden_state[:, 0])
logits = self.classifier(output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def preprocess_image(self, images):
logger.info("Preprocessing images")
return self.feature_extractor(images, return_tensors="pt")
def predict(
self, images, batch_size=32, classes_names=True, return_probabilities=False
):
logger.info("Predicting")
if not isinstance(images, list):
images = [images]
classes_list = []
confidence_list = []
for bs in tqdm(
range(0, len(images), batch_size), desc="Preprocessing training images"
):
images_batch = [image for image in images[bs : bs + batch_size]]
images_batch = self.preprocess_image(images_batch)["pixel_values"]
sequence_classifier_output = self.forward(images_batch, None)
# Get max prob
probs = sequence_classifier_output.logits.softmax(dim=-1).tolist()
classes = np.argmax(probs, axis=1)
confidences = np.max(probs, axis=1)
classes_list.extend(classes)
confidence_list.extend(confidences)
if classes_names:
classes_list = self.label_encoder.inverse_transform(classes_list)
if return_probabilities:
return classes_list, confidence_list, probs
return classes_list, confidence_list
def save(self, path):
logger.info("Saving model")
os.makedirs(path, exist_ok=True)
torch.save(self.state_dict(), path + "/model.pt")
# Save label encoder
np.save(path + "/label_encoder.npy", self.label_encoder.classes_)
def load(self, path):
logger.info("Loading model")
# Load label encoder
# Check if label encoder and model exists
if not os.path.exists(path + "/label_encoder.npy") or not os.path.exists(
path + "/model.pt"
):
logger.warning("Label encoder or model not found")
return
self.label_encoder.classes_ = np.load(path + "/label_encoder.npy")
# Reload classifier layer
self.classifier = nn.Linear(
self.vit.config.hidden_size, len(self.label_encoder.classes_)
)
self.load_state_dict(torch.load(path + "/model.pt", map_location=self.device))
self.vit.to(self.device)
self.vit.eval()
self.to(self.device)
self.eval()
def evaluate(self, images, labels):
logger.info("Evaluating")
labels = self.label_encoder.transform(labels)
# Predict
y_pred, _ = self.predict(images, classes_names=False)
# Evaluate
metrics = metric.compute(predictions=y_pred, references=labels)
f1 = f1_score.compute(predictions=y_pred, references=labels, average="macro")
print(
classification_report(
labels,
y_pred,
labels=[i for i in range(len(self.label_encoder.classes_))],
target_names=self.label_encoder.classes_,
)
)
print(f"Accuracy: {metrics['accuracy']}")
print(f"F1: {f1}")
def partial_fit(self, images, labels, save_model_path="new_model", num_epochs=10):
logger.info("Partial fitting")
# Freeze ViT model but last layer
# params = [param for param in self.vit.parameters()]
# for param in params[:-1]:
# param.requires_grad = False
# Model in training mode
self.vit.train()
self.train()
re_training(images, labels, self, save_model_path, num_epochs)
self.load(save_model_path)
self.vit.eval()
self.eval()
self.evaluate(images, labels)
def __load_from_path(self, path, num_per_label=None):
images = []
labels = []
for label in os.listdir(path):
count = 0
label_folder_path = os.path.join(path, label)
for image_file in tqdm(
os.listdir(label_folder_path),
desc="Resizing images for label {}".format(label),
):
file_path = os.path.join(label_folder_path, image_file)
try:
image = Image.open(file_path)
image_shape = (
self.feature_extractor.size,
self.feature_extractor.size,
)
if image.size != image_shape:
image = image.resize(image_shape)
images.append(image.convert("RGB"))
labels.append(label)
count += 1
except Exception as e:
print(f"ERROR - Could not resize image {file_path} - {e}")
if num_per_label is not None and count >= num_per_label:
break
return images, labels
def retrain_from_path(
self,
path="./data/feedback",
num_per_label=None,
save_model_path="new_model",
remove_path=False,
num_epochs=10,
save_new_data=data_path + "/new_data",
):
logger.info("Retraining from path")
# Load path
images, labels = self.__load_from_path(path, num_per_label)
# Retrain
self.partial_fit(images, labels, save_model_path, num_epochs)
# Save new data
if save_new_data is not None:
logger.info("Saving new data")
for i, (image, label) in enumerate(zip(images, labels)):
label_path = os.path.join(save_new_data, label)
os.makedirs(label_path, exist_ok=True)
image.save(
os.path.join(label_path, str(int(time.time())) + f"_{i}.jpg")
)
# Remove path folder
if remove_path:
logger.info("Removing feedback path")
shutil.rmtree(path)
def evaluate_from_path(self, path, num_per_label=None):
logger.info("Evaluating from path")
# Load images
images, labels = self.__load_from_path(path, num_per_label)
# Evaluate
self.evaluate(images, labels)
|