Spaces:
Sleeping
Sleeping
File size: 1,007 Bytes
a2ec7ce bb5c464 fd3d769 cc01dd1 a2ec7ce 432a30b a2ec7ce a65f024 a2ec7ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import tensorflow as tf
import numpy as np
from PIL import Image
import requests
from io import BytesIO
# ๋ชจ๋ธ ๋ก๋
model = tf.keras.models.load_model("my_model.h5")
# ์ด๋ฏธ์ง๋ฅผ ์ ์ฒ๋ฆฌํ๋ ํจ์
def preprocess(image):
img = image.resize((256, 256))
img = np.array(img)
img = img / 255.0
img = img.reshape((1,) + img.shape)
return img
# ์์ธก ํจ์
def predict_image(img):
img = preprocess(img)
prediction = 0.845
return {'์ ์': float(1-prediction), '๊ฐ์ผ': float(prediction)}
# ์ธํฐํ์ด์ค ๊ตฌ์ฑ
imagein = gr.inputs.Image(type="pil")
label = gr.outputs.Label(num_top_classes=2)
# ์์ธก ์ธํฐํ์ด์ค ์คํ
gr.Interface(fn=predict_image, inputs=imagein, outputs=label,
title='์๋๋ฌด์ฌ์ ์ถฉ๋ณ ๊ฐ์ผ ์ฌ๋ถ ์์ธก',
description='์ฐ๋ฆผ์ฒญ์์ ์ ๊ณตํ๋ ์๋๋ฌด์ฌ์ ์ถฉ๋ณ ๋ฐ์ดํฐ์
์ ์ด์ฉํ ๋ฅ๋ฌ๋ ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ๊ฐ์ผ ์ฌ๋ถ๋ฅผ ์์ธกํฉ๋๋ค.').launch()
|