File size: 8,159 Bytes
f4147c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import streamlit as st
import anthropic
import json
import os
from huggingface_hub import login
from transformers import AutoTokenizer

st.set_page_config(page_title="LLM Token Counter", page_icon="🤖", layout="wide")

st.title("🎈 LLM Token Counter")
st.markdown(
    "This app counts tokens for different language models based on your input text."
)

# Tabs for model provider selection
provider_tab = st.tabs(["Anthropic Models", "Hugging Face Models"])

with provider_tab[0]:  # Anthropic Models
    st.header("Anthropic (Claude) Models")

    # API key input (with warning about security)
    anthropic_key = st.text_input(
        "Enter your Anthropic API Key",
        type="password",
        help="⚠️ Never share your API key. Leave empty to use ANTHROPIC_API_KEY environment variable.",
    )

    # If no key provided, try to get from environment
    if not anthropic_key:
        anthropic_key = os.environ.get("ANTHROPIC_API_KEY", "")

    # Model selection for Anthropic
    anthropic_model_options = {
        "Claude 3.7 Sonnet": "claude-3-7-sonnet-20250219",
        "Claude 3.5 Sonnet": "claude-3-5-sonnet-20240620",
        "Claude 3.5 Haiku": "claude-3-5-haiku-20240307",
        "Claude 3 Haiku": "claude-3-haiku-20240307",
        "Claude 3 Opus": "claude-3-opus-20240229",
    }

    selected_anthropic_model = st.selectbox(
        "Select Claude Model", list(anthropic_model_options.keys())
    )

    # System message (optional)
    st.subheader("System Message (Optional)")
    system_message = st.text_area(
        "System Message", placeholder="e.g., You are a helpful assistant", height=100
    )

    # User message input
    st.subheader("Message Content")
    anthropic_user_message = st.text_area(
        "Enter your message here",
        placeholder="Hello, Claude! How are you today?",
        height=200,
        key="anthropic_message",
    )

    # Button to count tokens for Anthropic
    if st.button("Count Tokens (Anthropic)"):
        if not anthropic_key:
            st.error(
                "No Anthropic API key found. Please enter a key or set the ANTHROPIC_API_KEY environment variable."
            )
        elif not anthropic_user_message:
            st.warning("Please enter a message to count tokens")
        else:
            try:
                # Initialize client with API key
                client = anthropic.Anthropic(api_key=anthropic_key)

                # Create the request
                count_request = {
                    "model": anthropic_model_options[selected_anthropic_model],
                    "messages": [{"role": "user", "content": anthropic_user_message}],
                }

                # Add system message if provided
                if system_message:
                    count_request["system"] = system_message

                # Make the API call to count tokens
                response = client.messages.count_tokens(**count_request)

                # Display results
                st.success(f"Input tokens: {response.input_tokens}")

                # Display the full JSON response in an expandable section
                with st.expander("View Full API Response"):
                    st.code(
                        json.dumps(response.model_dump(), indent=2), language="json"
                    )

            except Exception as e:
                st.error(f"An error occurred: {str(e)}")

with provider_tab[1]:  # Hugging Face Models
    st.header("Hugging Face Models")

    # HF Token input
    hf_token = st.text_input(
        "Enter your Hugging Face Token",
        type="password",
        help="⚠️ Never share your token. Leave empty to use HF_TOKEN environment variable.",
    )

    # If no token provided, try to get from environment
    if not hf_token:
        hf_token = os.environ.get("HF_TOKEN", "")

    # Login status tracker
    if "hf_logged_in" not in st.session_state:
        st.session_state.hf_logged_in = False

    # Login button
    if not st.session_state.hf_logged_in and st.button("Login to Hugging Face"):
        if not hf_token:
            st.error(
                "No Hugging Face token found. Please enter a token or set the HF_TOKEN environment variable."
            )
        else:
            try:
                login(token=hf_token)
                st.session_state.hf_logged_in = True
                st.success("Successfully logged in to Hugging Face")
            except Exception as e:
                st.error(f"Login failed: {str(e)}")

    if st.session_state.hf_logged_in or hf_token:
        # Predefined popular models
        hf_model_options = [
            "mistralai/Mistral-Small-24B-Instruct-2501",
            "mistralai/Mistral-Small-3.1-24B-Instruct-2503",
            "google/codegemma-7b",
            "Qwen/Qwen2.5-Coder-32B-Instruct",
            "microsoft/Phi-4-multimodal-instruct",
            "nvidia/Llama-3.3-70B-Instruct-FP4",
            "Other (specify)",
        ]

        selected_hf_model = st.selectbox("Select Hugging Face Model", hf_model_options)

        # Custom model input
        if selected_hf_model == "Other (specify)":
            custom_hf_model = st.text_input(
                "Enter model name (e.g., organization/model-name)"
            )
            selected_hf_model = (
                custom_hf_model if custom_hf_model else "gpt2"
            )  # Default to gpt2 if empty

        # User message input for HF
        hf_user_message = st.text_area(
            "Enter your message here",
            placeholder="Hello, world!",
            height=200,
            key="hf_message",
        )

        # Button to count tokens for HF
        if st.button("Count Tokens (Hugging Face)"):
            if not hf_user_message:
                st.warning("Please enter a message to count tokens")
            else:
                try:
                    with st.spinner(f"Loading tokenizer for {selected_hf_model}..."):
                        tokenizer = AutoTokenizer.from_pretrained(selected_hf_model)

                    # Count tokens in different ways
                    tokens = tokenizer.tokenize(hf_user_message)
                    token_ids = tokenizer.encode(hf_user_message)

                    # Display results
                    st.success(f"Token count: {len(tokens)}")
                    st.success(f"Token IDs count: {len(token_ids)}")

                    # Show the actual tokens
                    with st.expander("View Token Details"):
                        col1, col2 = st.columns(2)
                        with col1:
                            st.subheader("Tokens")
                            st.json([f"{i}: {token}" for i, token in enumerate(tokens)])
                        with col2:
                            st.subheader("Token IDs")
                            st.json(
                                [
                                    f"{i}: {token_id}"
                                    for i, token_id in enumerate(token_ids)
                                ]
                            )

                except Exception as e:
                    st.error(f"An error occurred: {str(e)}")

# Additional information
with st.expander("About Token Counting"):
    st.markdown("""
    ### What are tokens?

    Tokens are chunks of text that language models process. They can be parts of words, whole words, 
    or even punctuation. Different models tokenize text differently.

    ### Why count tokens?

    - **Cost Management**: Understanding token usage helps manage API costs
    - **Model Limitations**: Different models have different token limits
    - **Performance Optimization**: Helps optimize prompts for better responses

    ### Token Counting Tips

    - Shorter messages use fewer tokens
    - Special formatting, code blocks, and unusual characters may use more tokens
    - For Claude models, the system message also counts toward your token usage
    - Hugging Face models may tokenize text differently than Anthropic models
    """)

# Footer
st.markdown("---")
st.markdown("Created with Streamlit, Anthropic API, and Hugging Face Transformers")