Spaces:
Runtime error
Runtime error
import pandas as pd | |
import requests | |
import isort | |
import black | |
import flair | |
import time | |
from bs4 import BeautifulSoup | |
import re | |
import numpy as np | |
from flair.data import Sentence | |
from flair.models import SequenceTagger | |
from transformers import AutoTokenizer, AutoModelForQuestionAnswering, pipeline | |
import string | |
URL = "https://www.formula1.com/content/fom-website/en/latest/all.xml" | |
def get_xml(url): | |
# xpath is only for formula1 | |
# use urllib.parse to check for formula1.com website or other news | |
xml = pd.read_xml(url,xpath='channel/item') | |
# care taken to only consider results where there are more words not a single word quotes | |
def extract_quote(string): | |
# Use the re.findall function to extract the quoted text | |
results = re.findall(r'[β\"](.*?)[β\"]', string) | |
quotes = [] | |
for result in results: | |
split_result = result.split() | |
if len(split_result) >3: | |
quotes.append(result) | |
return quotes | |
def get_names(text): | |
# # load the NER tagger | |
tagger = SequenceTagger.load('ner') | |
sentence = Sentence(text) | |
tagger.predict(sentence) | |
names = [] | |
for label in sentence.get_labels('ner'): | |
if label.value == "PER": | |
names.append(f"{label.data_point.text}") | |
# convert to a set to remove some of the repetitions | |
names = list(set(names)) | |
return names | |
def get_text(new_articles_df): | |
""" | |
quotes outputs a list of quotes | |
""" | |
dfs_dict = {} | |
for article in tqdm(new_articles_df.iterrows()): | |
link = article[1]["guid"] | |
request = requests.get(link) | |
soup = BeautifulSoup(request.content, "html.parser") | |
# class_ below will be different for different websites | |
s = soup.find("div", class_="col-lg-8 col-xl-7 offset-xl-1 f1-article--content") | |
lines = s.find_all("p") | |
text_content = pd.DataFrame(data={"text": []}) | |
for i, line in enumerate(lines): | |
df = pd.DataFrame(data={"text": [line.text]}) | |
text_content = pd.concat([text_content, df], ignore_index=True) | |
strongs = s.find_all("strong") | |
strong_content = pd.DataFrame(data={"text": []}) | |
for i, strong in enumerate(strongs): | |
if i > 0: | |
df = pd.DataFrame(data={"text": [strong.text]}) | |
strong_content = pd.concat([strong_content, df], ignore_index=True) | |
# df has content | |
df = text_content[~text_content["text"].isin(strong_content["text"])].reset_index( | |
drop=True | |
) | |
# df["quote"] = df["text"].apply(lambda row: extract_quote(row)) | |
# # combine all rows into context | |
context = "" | |
for i,row in df.iterrows(): | |
context += f" {row['text']}" | |
quotes = extract_quote(context) | |
# to save some time not computing unnecessary NER | |
if len(quotes) != 0: | |
speakers = get_names(context) | |
else: | |
speakers = () | |
dfs_dict[link] = {'context':context, 'quotes':quotes, 'speakers':speakers} | |
return dfs_dict | |
def load_speaker_model(): | |
model_name = f"microsoft/deberta-v2-large" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForQuestionAnswering.from_pretrained(model_name) | |
question_answerer = pipeline("question-answering", model=model, tokenizer=tokenizer) | |
return question_answerer | |
def remove_punctuations(text): | |
modified_text = "".join([character for character in text if character not in string.punctuation]) | |
modified_text = modified_text.lstrip(" ") | |
modified_text = modified_text.rstrip(" ") | |
return modified_text | |
def check_updates(every=300): | |
while True: | |
time.sleep(every) | |
latest_xml = get_xml() | |
if ~previous_xml.equals(latest_xml): | |
print('New articles found') | |
new_articles_df = latest_xml[~latest_xml["guid"].isin(previous_xml["guid"])] | |
# loops through new articles and gets the necessary text, quotes and speakers | |
dfs_dict = get_text(new_articles_df) | |
else: | |
print('No New article is found') | |