tosin2013 commited on
Commit
e3d82b5
·
1 Parent(s): 6171c8a

attempting to ad loging

Browse files
Files changed (1) hide show
  1. app.py +10 -8
app.py CHANGED
@@ -50,10 +50,12 @@ dataset = load_dataset('tosin2013/autogen', streaming=True)
50
  dataset = Dataset.from_list(list(dataset['train']))
51
 
52
  # Initialize embeddings
 
53
  embeddings = HuggingFaceEmbeddings(
54
  model_name="sentence-transformers/all-MiniLM-L6-v2",
55
  model_kwargs={"device": "cpu"}
56
  )
 
57
 
58
  # Extract texts from the dataset
59
  texts = dataset['input']
@@ -61,7 +63,9 @@ texts = dataset['input']
61
  # Create and cache embeddings for the texts
62
  if not os.path.exists('embeddings.npy'):
63
  print("[LOG] Generating embeddings...")
 
64
  text_embeddings = embeddings.embed_documents(texts)
 
65
  np.save('embeddings.npy', text_embeddings)
66
  else:
67
  print("[LOG] Loading cached embeddings...")
@@ -88,7 +92,9 @@ def get_relevant_documents(query, k=5):
88
  import time
89
  start_time = time.time()
90
 
 
91
  query_embedding = embeddings.embed_query(query)
 
92
  distances, indices = nn.kneighbors([query_embedding], n_neighbors=k)
93
  relevant_docs = [texts[i] for i in indices[0]]
94
 
@@ -290,6 +296,7 @@ Provide the AutoGen v0.4 agent code that fulfills the user's request. Utilize fe
290
 
291
 
292
  # Create Gradio interface
 
293
  with gr.Blocks() as demo:
294
  gr.Markdown(f"""
295
  ## AutoGen v0.4 Agent Code Generator QA Agent
@@ -327,12 +334,14 @@ with gr.Blocks() as demo:
327
  outputs=[chatbot],
328
  queue=True
329
  )
 
330
 
331
  clear_btn.click(
332
  lambda: (None, ""),
333
  inputs=[],
334
  outputs=[chatbot, question]
335
  )
 
336
 
337
  import socket
338
 
@@ -350,14 +359,7 @@ if __name__ == "__main__":
350
  try:
351
  port = find_available_port()
352
  print(f"[LOG] Launching application on port {port}")
 
353
  demo.launch()
354
- # Verify server is actually running
355
- import time
356
- time.sleep(2) # Give server time to start
357
- with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
358
- if s.connect_ex(('localhost', port)) == 0:
359
- print(f"[SUCCESS] Server is running on port {port}")
360
- else:
361
- print(f"[ERROR] Failed to bind to port {port}")
362
  except Exception as e:
363
  print(f"[ERROR] Failed to start application: {str(e)}")
 
50
  dataset = Dataset.from_list(list(dataset['train']))
51
 
52
  # Initialize embeddings
53
+ print("[EMBEDDINGS] Loading sentence-transformers model...")
54
  embeddings = HuggingFaceEmbeddings(
55
  model_name="sentence-transformers/all-MiniLM-L6-v2",
56
  model_kwargs={"device": "cpu"}
57
  )
58
+ print("[EMBEDDINGS] Sentence-transformers model loaded successfully")
59
 
60
  # Extract texts from the dataset
61
  texts = dataset['input']
 
63
  # Create and cache embeddings for the texts
64
  if not os.path.exists('embeddings.npy'):
65
  print("[LOG] Generating embeddings...")
66
+ print("[EMBEDDINGS] Generating document embeddings...")
67
  text_embeddings = embeddings.embed_documents(texts)
68
+ print(f"[EMBEDDINGS] Generated embeddings for {len(texts)} documents")
69
  np.save('embeddings.npy', text_embeddings)
70
  else:
71
  print("[LOG] Loading cached embeddings...")
 
92
  import time
93
  start_time = time.time()
94
 
95
+ print("[EMBEDDINGS] Generating embedding for query...")
96
  query_embedding = embeddings.embed_query(query)
97
+ print("[EMBEDDINGS] Query embedding generated successfully")
98
  distances, indices = nn.kneighbors([query_embedding], n_neighbors=k)
99
  relevant_docs = [texts[i] for i in indices[0]]
100
 
 
296
 
297
 
298
  # Create Gradio interface
299
+ print("[CHAT] Initializing chat interface...")
300
  with gr.Blocks() as demo:
301
  gr.Markdown(f"""
302
  ## AutoGen v0.4 Agent Code Generator QA Agent
 
334
  outputs=[chatbot],
335
  queue=True
336
  )
337
+ print("[CHAT] Submit button handler configured")
338
 
339
  clear_btn.click(
340
  lambda: (None, ""),
341
  inputs=[],
342
  outputs=[chatbot, question]
343
  )
344
+ print("[CHAT] Clear button handler configured")
345
 
346
  import socket
347
 
 
359
  try:
360
  port = find_available_port()
361
  print(f"[LOG] Launching application on port {port}")
362
+ print("[CHAT] Starting chat server...")
363
  demo.launch()
 
 
 
 
 
 
 
 
364
  except Exception as e:
365
  print(f"[ERROR] Failed to start application: {str(e)}")