Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
try: # v1 | |
from flash_attn.flash_attn_interface import \ | |
flash_attn_unpadded_qkvpacked_func | |
except: # v2 | |
from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func | |
from flash_attn.bert_padding import pad_input, unpad_input | |
class FlashAttention(nn.Module): | |
"""Implement the scaled dot product attention with softmax. | |
Arguments | |
--------- | |
softmax_scale: The temperature to use for the softmax attention. | |
(default: 1/sqrt(d_keys) where d_keys is computed at | |
runtime) | |
attention_dropout: The dropout rate to apply to the attention | |
(default: 0.0) | |
""" | |
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None): | |
super().__init__() | |
self.softmax_scale = softmax_scale | |
self.dropout_p = attention_dropout | |
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None, | |
max_s=None, need_weights=False): | |
"""Implements the multihead softmax attention. | |
Arguments | |
--------- | |
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None | |
if unpadded: (nnz, 3, h, d) | |
key_padding_mask: a bool tensor of shape (B, S) | |
""" | |
assert not need_weights | |
assert qkv.dtype in [torch.float16, torch.bfloat16] | |
assert qkv.is_cuda | |
if cu_seqlens is None: | |
batch_size = qkv.shape[0] | |
seqlen = qkv.shape[1] | |
if key_padding_mask is None: | |
qkv = rearrange(qkv, 'b s ... -> (b s) ...') | |
max_s = seqlen | |
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32, | |
device=qkv.device) | |
output = flash_attn_unpadded_qkvpacked_func( | |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | |
softmax_scale=self.softmax_scale, causal=causal | |
) | |
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size) | |
else: | |
nheads = qkv.shape[-2] | |
x = rearrange(qkv, 'b s three h d -> b s (three h d)') | |
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) | |
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads) | |
output_unpad = flash_attn_unpadded_qkvpacked_func( | |
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | |
softmax_scale=self.softmax_scale, causal=causal | |
) | |
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), | |
indices, batch_size, seqlen), | |
'b s (h d) -> b s h d', h=nheads) | |
else: | |
assert max_s is not None | |
output = flash_attn_unpadded_qkvpacked_func( | |
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0, | |
softmax_scale=self.softmax_scale, causal=causal | |
) | |
return output, None |