File size: 1,818 Bytes
2584554
 
 
 
 
0dfd6d0
 
2584554
 
 
 
 
 
 
6e91c12
2584554
0dfd6d0
2584554
 
 
9a61481
2584554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a61481
2584554
 
 
fbdbf06
2584554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr  
from transformers import AutoModel, AutoTokenizer  
import torch
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from Models.modeling_llavaqw import LlavaQwModel




IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


model_name = "torettomarui/Llava-qw"  
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False)
model = LlavaQwModel.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
).to(torch.bfloat16).eval()#.cuda()

def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def preprocess_image(file_path, image_size=448):

    transform = build_transform(image_size)
    pixel_values = transform(file_path)
    return torch.stack([pixel_values]).to(torch.bfloat16)#.cuda()

def generate_response(image, text):  

    pixel_values = preprocess_image(image)

    generation_config = dict(max_new_tokens=2048, do_sample=False)

    question = '<image>\n' + text

    response = model.chat(tokenizer, pixel_values, question, generation_config)
    
    return response  

iface = gr.Interface(  
    fn=generate_response,  
    inputs=[  
        gr.Image(type="pil", label="上传图片"),  
        gr.Textbox(lines=2, placeholder="输入你的问题..."),  
    ],  
    outputs="text",  
    title="Llava-QW",  
    description="上传一张图片并输入你的问题,模型将生成相应的回答。",  
)  

iface.launch()