tony-42069's picture
Simplified PDF processing and dependencies
f3dfbd4
raw
history blame contribute delete
6.95 kB
"""
Main Streamlit application for the CRE Chatbot.
"""
import logging
import streamlit as st
from io import BytesIO
import sys
import os
# Add the project root to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from app.config import validate_config, AZURE_OPENAI_DEPLOYMENT_NAME
from app.logging import setup_logging
from src.pdf_processor import PDFProcessor
from src.rag_engine import RAGEngine
# Setup logging
loggers = setup_logging()
logger = logging.getLogger('app')
# Page configuration
st.set_page_config(
page_title="CRE Knowledge Assistant",
page_icon="🏒",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main {
background-color: #f5f5f5;
}
.stApp {
max-width: 1200px;
margin: 0 auto;
}
.chat-message {
padding: 1.5rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
display: flex;
flex-direction: column;
}
.chat-message.user {
background-color: #e3f2fd;
}
.chat-message.assistant {
background-color: #f3e5f5;
}
.chat-message .message {
margin-top: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'rag_engine' not in st.session_state:
st.session_state.rag_engine = None
if 'pdf_processor' not in st.session_state:
st.session_state.pdf_processor = PDFProcessor()
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'uploaded_pdfs' not in st.session_state:
st.session_state.uploaded_pdfs = set()
def initialize_rag_engine(deployment_name: str):
"""Initialize the RAG engine with error handling."""
try:
st.session_state.rag_engine = RAGEngine(deployment_name)
logger.info("RAG Engine initialized successfully")
except Exception as e:
logger.error(f"Error initializing the application: {str(e)}")
st.error(f"Error initializing the application: {str(e)}")
def process_pdf(pdf_file):
"""Process uploaded PDF file."""
try:
# Check if PDF was already processed
if pdf_file.name in st.session_state.uploaded_pdfs:
st.warning(f"'{pdf_file.name}' has already been processed!")
return
with st.spinner(f"Processing {pdf_file.name}..."):
# Read PDF content
pdf_content = pdf_file.read()
# Process PDF and get chunks
chunks = st.session_state.pdf_processor.process_pdf(
BytesIO(pdf_content)
)
# Add chunks to vector store
texts = [chunk[0] for chunk in chunks]
metadata = [{"source": pdf_file.name, **chunk[1]} for chunk in chunks]
st.session_state.rag_engine.add_documents(texts, metadata)
# Mark PDF as processed
st.session_state.uploaded_pdfs.add(pdf_file.name)
st.success(f"Successfully processed '{pdf_file.name}'!")
logger.info(f"PDF '{pdf_file.name}' processed and added to vector store")
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
st.error(f"Error processing PDF: {str(e)}")
def display_chat_message(role: str, content: str):
"""Display a chat message with proper styling."""
with st.container():
st.markdown(f"""
<div class="chat-message {role}">
<div class="role"><strong>{'You' if role == 'user' else 'Assistant'}:</strong></div>
<div class="message">{content}</div>
</div>
""", unsafe_allow_html=True)
def main():
"""Main application function."""
# Header
col1, col2 = st.columns([2, 1])
with col1:
st.title("🏒 CRE Knowledge Assistant")
st.markdown("*Your AI guide for commercial real estate concepts*")
# Sidebar
with st.sidebar:
st.header("πŸ“š Knowledge Base")
st.markdown("Upload your CRE documents to enhance the assistant's knowledge.")
# Model configuration (collapsible)
with st.expander("βš™οΈ Model Configuration"):
deployment_name = st.text_input(
"Model Deployment Name",
value=AZURE_OPENAI_DEPLOYMENT_NAME,
help="Enter your Azure OpenAI model deployment name"
)
# Initialize RAG engine if not already done
if not st.session_state.rag_engine:
initialize_rag_engine(deployment_name)
# PDF upload section
st.subheader("πŸ“„ Upload Documents")
uploaded_files = st.file_uploader(
"Choose PDF files",
type="pdf",
accept_multiple_files=True,
help="Upload one or more PDF files to add to the knowledge base"
)
if uploaded_files:
for pdf_file in uploaded_files:
process_pdf(pdf_file)
# Show processed documents
if st.session_state.uploaded_pdfs:
st.subheader("πŸ“š Processed Documents")
for pdf_name in st.session_state.uploaded_pdfs:
st.markdown(f"βœ“ {pdf_name}")
# Main chat interface
if st.session_state.rag_engine:
# Display chat history
for message in st.session_state.chat_history:
display_chat_message(
role=message["role"],
content=message["content"]
)
# Chat input
user_question = st.text_input(
"Ask a question about commercial real estate:",
placeholder="e.g., What is LTV? How is DSCR calculated?",
key="user_question"
)
if user_question:
try:
# Add user message to chat
st.session_state.chat_history.append({
"role": "user",
"content": user_question
})
with st.spinner("Generating answer..."):
response = st.session_state.rag_engine.query(user_question)
# Add assistant response to chat
st.session_state.chat_history.append({
"role": "assistant",
"content": response["answer"]
})
# Display latest messages immediately
display_chat_message("user", user_question)
display_chat_message("assistant", response["answer"])
except Exception as e:
logger.error(f"Error generating answer: {str(e)}")
st.error(f"Error generating answer: {str(e)}")
else:
st.info("πŸ‘† Please upload PDF documents in the sidebar to start asking questions!")
if __name__ == "__main__":
main()