Spaces:
Paused
Paused
Upload 4 files
Browse files- app/agent.py +11 -0
- app/main.py +34 -0
- app/speech_to_text.py +9 -0
- app/text_to_speech.py +11 -0
app/agent.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from models.local_llm import run_llm
|
2 |
+
|
3 |
+
conversation_memory = []
|
4 |
+
|
5 |
+
def process_text(input_text: str) -> str:
|
6 |
+
conversation_memory.append({"user": input_text})
|
7 |
+
context = "\n".join([f"User: {m['user']}" for m in conversation_memory])
|
8 |
+
prompt = f"You are a telecom AI assistant. Context:\n{context}\nRespond:"
|
9 |
+
response = run_llm(prompt)
|
10 |
+
conversation_memory.append({"assistant": response})
|
11 |
+
return response
|
app/main.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, Request
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from app.agent import process_text
|
4 |
+
from app.speech_to_text import transcribe_audio
|
5 |
+
from app.text_to_speech import synthesize_speech
|
6 |
+
from fastapi.responses import StreamingResponse, JSONResponse
|
7 |
+
import io
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
app.add_middleware(
|
12 |
+
CORSMiddleware,
|
13 |
+
allow_origins=["*"],
|
14 |
+
allow_methods=["*"],
|
15 |
+
allow_headers=["*"],
|
16 |
+
)
|
17 |
+
|
18 |
+
@app.post("/transcribe")
|
19 |
+
async def transcribe(file: UploadFile = File(...)):
|
20 |
+
audio_bytes = await file.read()
|
21 |
+
text = transcribe_audio(audio_bytes)
|
22 |
+
return {"transcription": text}
|
23 |
+
|
24 |
+
@app.post("/query")
|
25 |
+
async def query_agent(request: Request):
|
26 |
+
data = await request.json()
|
27 |
+
input_text = data.get("input_text", "")
|
28 |
+
response = process_text(input_text)
|
29 |
+
return {"response": response}
|
30 |
+
|
31 |
+
@app.get("/speak")
|
32 |
+
async def speak(text: str):
|
33 |
+
audio = synthesize_speech(text)
|
34 |
+
return StreamingResponse(io.BytesIO(audio), media_type="audio/wav")
|
app/speech_to_text.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import whisper
|
2 |
+
|
3 |
+
model = whisper.load_model("base")
|
4 |
+
|
5 |
+
def transcribe_audio(audio_bytes):
|
6 |
+
with open("temp.wav", "wb") as f:
|
7 |
+
f.write(audio_bytes)
|
8 |
+
result = model.transcribe("temp.wav")
|
9 |
+
return result["text"]
|
app/text_to_speech.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import edge_tts
|
3 |
+
|
4 |
+
async def generate_tts(text: str):
|
5 |
+
communicate = edge_tts.Communicate(text, "en-US-JennyNeural")
|
6 |
+
await communicate.save("speech.mp3")
|
7 |
+
with open("speech.mp3", "rb") as f:
|
8 |
+
return f.read()
|
9 |
+
|
10 |
+
def synthesize_speech(text):
|
11 |
+
return asyncio.run(generate_tts(text))
|