Spaces:
Sleeping
Sleeping
First app version
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from io import StringIO
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
from torch.nn import functional as F
|
5 |
+
import torch
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
import numpyAc
|
9 |
+
|
10 |
+
st.set_page_config(layout="wide")
|
11 |
+
|
12 |
+
@st.cache_resource
|
13 |
+
def load_model():
|
14 |
+
return AutoModelForCausalLM.from_pretrained(
|
15 |
+
"codellama/CodeLlama-7b-Python-hf",
|
16 |
+
device_map='auto',
|
17 |
+
)
|
18 |
+
|
19 |
+
@st.cache_resource
|
20 |
+
def load_tokenizer():
|
21 |
+
return AutoTokenizer.from_pretrained("codellama/CodeLlama-7b-Python-hf")
|
22 |
+
|
23 |
+
model = load_model()
|
24 |
+
tokenizer = load_tokenizer()
|
25 |
+
|
26 |
+
st.title('Python file compressor')
|
27 |
+
encode_col, decode_col = st.columns(2, gap='medium')
|
28 |
+
|
29 |
+
@st.cache_data
|
30 |
+
def encode(text):
|
31 |
+
codec = numpyAc.arithmeticCoding()
|
32 |
+
tokenized = tokenizer(text, return_tensors='pt').input_ids.to('cuda')
|
33 |
+
output = list()
|
34 |
+
past_key_values = None
|
35 |
+
|
36 |
+
for i in range(tokenized.shape[1]):
|
37 |
+
with torch.no_grad():
|
38 |
+
output_ = model(
|
39 |
+
input_ids=tokenized[:, i:i + 1],
|
40 |
+
use_cache=True,
|
41 |
+
past_key_values=past_key_values
|
42 |
+
)
|
43 |
+
past_key_values = output_.past_key_values
|
44 |
+
logits = output_.logits[0, -1:, :]
|
45 |
+
output.append(logits)
|
46 |
+
output = torch.cat(output, dim=0)
|
47 |
+
output = F.softmax(output, dim=-1)
|
48 |
+
tokenized = torch.cat((tokenized.squeeze()[1:], torch.tensor([2], device='cuda'))) # Add EOS
|
49 |
+
tokenized = tokenized.type(torch.int16).cpu().numpy()
|
50 |
+
byte_stream, _ = codec.encode(output.cpu(), tokenized)
|
51 |
+
return byte_stream
|
52 |
+
|
53 |
+
@st.cache_data
|
54 |
+
def decode(byte_stream):
|
55 |
+
decodec = numpyAc.arithmeticDeCoding(byte_stream, 32_000)
|
56 |
+
input_ids = [1]
|
57 |
+
past_key_values = None
|
58 |
+
|
59 |
+
while input_ids[-1] != 2:
|
60 |
+
with torch.no_grad():
|
61 |
+
output = model(
|
62 |
+
input_ids=torch.tensor([input_ids[-1:]], device='cuda'),
|
63 |
+
use_cache=True,
|
64 |
+
past_key_values=past_key_values
|
65 |
+
)
|
66 |
+
past_key_values = output.past_key_values
|
67 |
+
logits = output.logits[0, -1:, :]
|
68 |
+
logits = F.softmax(logits, dim=-1).cpu()
|
69 |
+
next_token = decodec.decode(logits)
|
70 |
+
input_ids.append(next_token)
|
71 |
+
return input_ids
|
72 |
+
|
73 |
+
with encode_col:
|
74 |
+
st.header('Convert your python file to binary.')
|
75 |
+
python_file = st.file_uploader("Upload your python file here. I recommend files up to 50-100 lines, so it doesn't take too long.")
|
76 |
+
if python_file is not None:
|
77 |
+
stringio = StringIO(python_file.getvalue().decode("utf-8"))
|
78 |
+
code = stringio.read()
|
79 |
+
bytes_stream = encode(code)
|
80 |
+
bin_filename = f'{python_file.name.split(".")[0]}.bin'
|
81 |
+
st.download_button('Download binary file', bytes_stream, bin_filename)
|
82 |
+
|
83 |
+
with decode_col:
|
84 |
+
st.header('Convert your binary file to python')
|
85 |
+
binary_file = st.file_uploader('Upload your binary file here')
|
86 |
+
if binary_file is not None:
|
87 |
+
tokens = decode(binary_file.read())
|
88 |
+
decompressed = tokenizer.decode(tokens, skip_special_tokens=True)
|
89 |
+
py_filename = f'{binary_file.name.split(".")[0]}.py'
|
90 |
+
st.download_button('Download python file', decompressed, py_filename)
|
91 |
+
st.code(decompressed)
|