tomaszki's picture
Change recommended file length
a5c582f
import streamlit as st
from io import StringIO
from transformers import AutoTokenizer, AutoModelForCausalLM
from torch.nn import functional as F
import torch
import numpy as np
import numpyAc
st.set_page_config(layout="wide")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
@st.cache_resource
def load_model():
return AutoModelForCausalLM.from_pretrained(
"PY007/TinyLlama-1.1B-python-v0.1",
).to(device)
@st.cache_resource
def load_tokenizer():
return AutoTokenizer.from_pretrained("PY007/TinyLlama-1.1B-python-v0.1")
model = load_model()
tokenizer = load_tokenizer()
st.title('Python file compressor')
encode_col, decode_col = st.columns(2, gap='medium')
@st.cache_data
def encode(text):
bar = st.progress(0.0)
codec = numpyAc.arithmeticCoding()
tokenized = tokenizer(text, return_tensors='pt').input_ids.to(device)
output = list()
past_key_values = None
# We can't run a single pass over all tokens, because
# we get inconsistent results then
length = tokenized.shape[1]
for i in range(length):
bar.progress(min(((i + 1) + (i + 1) ** 2 / 1000) / (length + length ** 2 // 1000), 1.0))
with torch.no_grad():
output_ = model(
input_ids=tokenized[:, i:i + 1],
use_cache=True,
past_key_values=past_key_values
)
past_key_values = output_.past_key_values
logits = output_.logits[0, -1:, :]
output.append(logits)
output = torch.cat(output, dim=0)
output = F.softmax(output, dim=-1)
tokenized = torch.cat((tokenized.squeeze()[1:], torch.tensor([2], device=device))) # Add EOS
tokenized = tokenized.type(torch.int16).cpu().numpy()
byte_stream, _ = codec.encode(output.cpu(), tokenized)
return byte_stream
@st.cache_data
def decode(byte_stream):
# Unfortunately progressbar for decoding isn't possible/is hard
decodec = numpyAc.arithmeticDeCoding(byte_stream, 32_000)
input_ids = [1]
past_key_values = None
while input_ids[-1] != 2:
with torch.no_grad():
output = model(
input_ids=torch.tensor([input_ids[-1:]], device=device),
use_cache=True,
past_key_values=past_key_values
)
past_key_values = output.past_key_values
logits = output.logits[0, -1:, :]
logits = F.softmax(logits, dim=-1).cpu()
next_token = decodec.decode(logits)
input_ids.append(next_token)
return input_ids
with encode_col:
st.header('Convert your python file to binary.')
python_file = st.file_uploader("Upload your python file here. I recommend files up to 10-20 lines, so it doesn't take too long.")
if python_file is not None:
stringio = StringIO(python_file.getvalue().decode("utf-8"))
code = stringio.read()
bytes_stream = encode(code)
bin_filename = f'{python_file.name.split(".")[0]}.bin'
st.download_button('Download binary file', bytes_stream, bin_filename)
with decode_col:
st.header('Convert your binary file to python')
binary_file = st.file_uploader('Upload your binary file here')
if binary_file is not None:
tokens = decode(binary_file.read())
decompressed = tokenizer.decode(tokens, skip_special_tokens=True)
py_filename = f'{binary_file.name.split(".")[0]}.py'
st.download_button('Download python file', decompressed, py_filename)
st.code(decompressed)