File size: 9,857 Bytes
e389f7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
/**
 * COPYRIGHT 2020 ETH Zurich
 * BASED on
 *
 * https://marknelson.us/posts/2014/10/19/data-compression-with-arithmetic-coding.html
 */

#include <torch/extension.h>

#include <iostream>
#include <vector>
#include <tuple>
#include <fstream>
#include <algorithm>
#include <string>
#include <chrono>
#include <numeric>
#include <iterator>

#include <bitset>

using cdf_t = uint16_t;

/** Encapsulates a pointer to a CDF tensor */
struct cdf_ptr {
    cdf_t* data;  // expected to be a N_sym x Lp matrix, stored in row major.
    const int N_sym;  // Number of symbols stored by `data`.
    const int Lp;  // == L+1, where L is the number of possible values a symbol can take.
    cdf_ptr(cdf_t* data,
            const int N_sym,
            const int Lp) : data(data), N_sym(N_sym), Lp(Lp) {};
};



/** Class to save output bit by bit to a byte string */
class OutCacheString {
private:
public:
    std::string out="";
    uint8_t cache=0;
    uint8_t count=0;
    void append(const int bit) {
        cache <<= 1;
        cache |= bit;
        count += 1;
        if (count == 8) {
            out.append(reinterpret_cast<const char *>(&cache), 1);
            count = 0;
        }
    }
    void flush() {
        if (count > 0) {
            for (int i = count; i < 8; ++i) {
                append(0);
            }
            assert(count==0);
        }
    }
    void append_bit_and_pending(const int bit, uint64_t &pending_bits) {
        append(bit);
        while (pending_bits > 0) {
            append(!bit);
            pending_bits -= 1;
        }
    }
};

/** Class to read byte string bit by bit */
class InCacheString {
private:
    const std::string in_;

public:
    explicit InCacheString(const std::string& in) : in_(in) {};

    uint8_t cache=0;
    uint8_t cached_bits=0;
    size_t in_ptr=0;

    void get(uint32_t& value) {
        
        if (cached_bits == 0) {
            if (in_ptr == in_.size()){       
                value <<= 1;
                return;
            }
            /// Read 1 byte
            
            cache = (uint8_t) in_[in_ptr];
            in_ptr++;
            cached_bits = 8;
        }
        value <<= 1;
        value |= (cache >> (cached_bits - 1)) & 1;
        cached_bits--;
    }

    void initialize(uint32_t& value) {
        for (int i = 0; i < 32; ++i) {
            get(value);
        }
    }
};


//------------------------------------------------------------------------------


cdf_t binsearch(py::list &cdf, cdf_t target, cdf_t max_sym,
                const int offset)  /* i * Lp */
{
    cdf_t left = 0;
    cdf_t right = max_sym + 1;  // len(cdf) == max_sym + 2

    while (left + 1 < right) {  // ?
        // Left and right will be < 0x10000 in practice,
        // so left+right fits in uint16_t.
        const auto m = static_cast<const cdf_t>((left + right) / 2);
        const auto v = cdf[offset + m].cast<cdf_t>();
        if (v < target) {
            left = m;
        } else if (v > target) {
            right = m;
        } else {
            return m;
        }
    }

    return left;
}


class decode
{
private:

public:
    int dataID=0;
    const int Lp;// To calculate offset
    const int N_sym;// To know the # of syms to decode. Is encoded in the stream!
    const int max_symbol;
    uint32_t low = 0;
    uint32_t high = 0xFFFFFFFFU;
    const uint32_t c_count = 0x10000U;
    const int precision = 16;
    cdf_t sym_i = 0;
    uint32_t value = 0;
    InCacheString in_cache;
    decode(const std::string &in, const int&sysNum_,const int&sysNumDim_):in_cache(in),N_sym(sysNum_),Lp(sysNumDim_),max_symbol(sysNumDim_-2){
        in_cache.initialize(value);
    
    };
    
    int16_t decodeAsym(py::list cdf) {


        for (; dataID < N_sym; ++dataID) {
 
            const uint64_t span = static_cast<uint64_t>(high) - static_cast<uint64_t>(low) + 1;
            // always < 0x10000 ???
            const uint16_t count = ((static_cast<uint64_t>(value) - static_cast<uint64_t>(low) + 1) * c_count - 1) / span;

            int offset = 0;

            sym_i = binsearch(cdf, count, (cdf_t)max_symbol, offset);


            if (dataID == N_sym-1) {
                break;
            }


            const uint32_t c_low = cdf[offset + sym_i].cast<cdf_t>();
            const uint32_t c_high = sym_i == max_symbol ? 0x10000U : cdf[offset + sym_i + 1].cast<cdf_t>();

            high = (low - 1) + ((span * static_cast<uint64_t>(c_high)) >> precision);
            low =  (low)     + ((span * static_cast<uint64_t>(c_low))  >> precision);

            while (true) {
                if (low >= 0x80000000U || high < 0x80000000U) {
                    low <<= 1;
                    high <<= 1;
                    high |= 1;
                    
                    in_cache.get(value);
                
                } else if (low >= 0x40000000U && high < 0xC0000000U) {
                    /**
                     * 0100 0000 ... <= value <  1100 0000 ...
                     * <=>
                     * 0100 0000 ... <= value <= 1011 1111 ...
                     * <=>
                     * value starts with 01 or 10.
                     * 01 - 01 == 00  |  10 - 01 == 01
                     * i.e., with shifts
                     * 01A -> 0A  or  10A -> 1A, i.e., discard 2SB as it's all the same while we are in
                     *    near convergence
                     */
                    low <<= 1;
                    low &= 0x7FFFFFFFU;  // make MSB 0
                    high <<= 1;
                    high |= 0x80000001U;  // add 1 at the end, retain MSB = 1
                    value -= 0x40000000U;
                
                    in_cache.get(value);
      
                } else {
                    break; 
                }
            }
   
            return (int16_t)sym_i;
        }
    }

};

const void check_sym(const torch::Tensor& sym) {
    TORCH_CHECK(sym.sizes().size() == 1,
                "Invalid size for sym. Expected just 1 dim.")
}

/** Get an instance of the `cdf_ptr` struct. */
const struct cdf_ptr get_cdf_ptr(const torch::Tensor& cdf)
{
    TORCH_CHECK(!cdf.is_cuda(), "cdf must be on CPU!")
    const auto s = cdf.sizes();
    TORCH_CHECK(s.size() == 2, "Invalid size for cdf! Expected (N, Lp)")

    const int N_sym = s[0];
    const int Lp = s[1];
    const auto cdf_acc = cdf.accessor<int16_t, 2>();
    cdf_t* cdf_ptr = (uint16_t*)cdf_acc.data();

    const struct cdf_ptr res(cdf_ptr, N_sym, Lp);
    return res;
}


// -----------------------------------------------------------------------------


/** Encode symbols `sym` with CDF represented by `cdf_ptr`. NOTE: this is not exposted to python. */
py::bytes encode(
        const cdf_ptr& cdf_ptr,
        const torch::Tensor& sym){

    OutCacheString out_cache;

    uint32_t low = 0;
    uint32_t high = 0xFFFFFFFFU;
    uint64_t pending_bits = 0;

    const int precision = 16;

    const cdf_t* cdf = cdf_ptr.data;
    const int N_sym = cdf_ptr.N_sym;
    const int Lp = cdf_ptr.Lp;
    const int max_symbol = Lp - 2;

    auto sym_ = sym.accessor<int16_t, 1>();

    for (int i = 0; i < N_sym; ++i) {
        const int16_t sym_i = sym_[i];

        const uint64_t span = static_cast<uint64_t>(high) - static_cast<uint64_t>(low) + 1;

        const int offset = i * Lp;
        // Left boundary is at offset + sym_i
        const uint32_t c_low = cdf[offset + sym_i];
        // Right boundary is at offset + sym_i + 1, except for the `max_symbol`
        // For which we hardcode the maxvalue. So if e.g.
        // L == 4, it means that Lp == 5, and the allowed symbols are
        // {0, 1, 2, 3}. The max symbol is thus Lp - 2 == 3. It's probability
        // is then given by c_max - cdf[-2].
        const uint32_t c_high = sym_i == max_symbol ? 0x10000U : cdf[offset + sym_i + 1];

        high = (low - 1) + ((span * static_cast<uint64_t>(c_high)) >> precision);
        low =  (low)     + ((span * static_cast<uint64_t>(c_low))  >> precision);

        while (true) {
            if (high < 0x80000000U) {
                out_cache.append_bit_and_pending(0, pending_bits);
                low <<= 1;
                high <<= 1;
                high |= 1;
            } else if (low >= 0x80000000U) {
                out_cache.append_bit_and_pending(1, pending_bits);
                low <<= 1;
                high <<= 1;
                high |= 1;
            } else if (low >= 0x40000000U && high < 0xC0000000U) {
                pending_bits++;
                low <<= 1;
                low &= 0x7FFFFFFF;
                high <<= 1;
                high |= 0x80000001;
            } else {
                break;
            }
        }
    }

    pending_bits += 1;

    if (pending_bits) {
        if (low < 0x40000000U) {
            out_cache.append_bit_and_pending(0, pending_bits);
        } else {
            out_cache.append_bit_and_pending(1, pending_bits);
        }
    }

    out_cache.flush();

#ifdef VERBOSE
    std::chrono::steady_clock::time_point end= std::chrono::steady_clock::now();
    std::cout << "Time difference (sec) = " << (std::chrono::duration_cast<std::chrono::microseconds>(end - begin).count()) /1000000.0 <<std::endl;
#endif

    return py::bytes(out_cache.out);
}


/** See torchac.py */
py::bytes encode_cdf(
        const torch::Tensor& cdf, /* NHWLp, must be on CPU! */
        const torch::Tensor& sym)
{
    check_sym(sym);
    const auto cdf_ptr = get_cdf_ptr(cdf);
    return encode(cdf_ptr, sym);
}




PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
    m.def("encode_cdf", &encode_cdf, "Encode from CDF");
 
    py::class_<decode>(m, "decode")
        .def(py::init([] (const std::string in, const int&sysNum_,const int&sysNumDim_) {
            return new decode(in,sysNum_,sysNumDim_);
        }))
        .def("decodeAsym", &decode::decodeAsym);
}