File size: 6,869 Bytes
917fe92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import matplotlib.pyplot as plt
import warnings

import numpy as np
import cv2
import os
import os.path as osp
import imageio
from copy import deepcopy

import loguru
import torch
from ..models.loftr import LoFTR, default_cfg

from .utils3d import rect_to_img, canonical_to_camera, calc_pose


class ElevEstHelper:
    _feature_matcher = None

    @classmethod
    def get_feature_matcher(cls, ckpt_path, device):
        if cls._feature_matcher is None:
            loguru.logger.info("Loading feature matcher...")
            assert os.path.exists(ckpt_path)
            _default_cfg = deepcopy(default_cfg)
            _default_cfg['coarse']['temp_bug_fix'] = True  # set to False when using the old ckpt
            matcher = LoFTR(config=_default_cfg)
            matcher.load_state_dict(torch.load(ckpt_path)['state_dict'])
            matcher = matcher.eval().to(device)
            cls._feature_matcher = matcher
        return cls._feature_matcher


def mask_out_bkgd(img):
    if img.shape[-1] == 4:
        fg_mask = img[:, :, :3]
    else:
        loguru.logger.info("Image has no alpha channel, using thresholding to mask out background")
        fg_mask = ~(img > 245).all(axis=-1)
    return fg_mask


def get_feature_matching(matcher, images):
    assert len(images) == 4
    feature_matching = {}
    masks = []
    for i in range(4):
        mask = mask_out_bkgd(images[i])
        masks.append(mask)
    for i in range(0, 4):
        for j in range(i + 1, 4):
            mask0 = masks[i]
            mask1 = masks[j]
            img0_raw = cv2.cvtColor(images[i], cv2.COLOR_RGB2GRAY)
            img1_raw = cv2.cvtColor(images[j], cv2.COLOR_RGB2GRAY)
            original_shape = img0_raw.shape
            img0_raw_resized = cv2.resize(img0_raw, (480, 480))
            img1_raw_resized = cv2.resize(img1_raw, (480, 480))

            img0 = torch.from_numpy(img0_raw_resized)[None][None].cuda() / 255.
            img1 = torch.from_numpy(img1_raw_resized)[None][None].cuda() / 255.
            batch = {'image0': img0, 'image1': img1}

            # Inference with LoFTR and get prediction
            with torch.no_grad():
                matcher(batch)
                mkpts0 = batch['mkpts0_f'].cpu().numpy()
                mkpts1 = batch['mkpts1_f'].cpu().numpy()
                mconf = batch['mconf'].cpu().numpy()
            mkpts0[:, 0] = mkpts0[:, 0] * original_shape[1] / 480
            mkpts0[:, 1] = mkpts0[:, 1] * original_shape[0] / 480
            mkpts1[:, 0] = mkpts1[:, 0] * original_shape[1] / 480
            mkpts1[:, 1] = mkpts1[:, 1] * original_shape[0] / 480
            keep0 = mask0[mkpts0[:, 1].astype(int), mkpts1[:, 0].astype(int)]
            keep1 = mask1[mkpts1[:, 1].astype(int), mkpts1[:, 0].astype(int)]
            keep = np.logical_and(keep0, keep1)
            mkpts0 = mkpts0[keep]
            mkpts1 = mkpts1[keep]
            mconf = mconf[keep]
            feature_matching[f"{i}_{j}"] = np.concatenate([mkpts0, mkpts1, mconf[:, None]], axis=1)

    return feature_matching


def gen_pose_hypothesis(center_elevation):
    elevations = np.radians(
        [center_elevation, center_elevation - 10, center_elevation + 10, center_elevation, center_elevation])  # 45~120
    azimuths = np.radians([30, 30, 30, 20, 40])
    input_poses = calc_pose(elevations, azimuths, len(azimuths))
    input_poses = input_poses[1:]
    input_poses[..., 1] *= -1
    input_poses[..., 2] *= -1
    return input_poses


def ba_error_general(K, matches, poses):
    projmat0 = K @ poses[0].inverse()[:3, :4]
    projmat1 = K @ poses[1].inverse()[:3, :4]
    match_01 = matches[0]
    pts0 = match_01[:, :2]
    pts1 = match_01[:, 2:4]
    Xref = cv2.triangulatePoints(projmat0.cpu().numpy(), projmat1.cpu().numpy(),
                                 pts0.cpu().numpy().T, pts1.cpu().numpy().T)
    Xref = Xref[:3] / Xref[3:]
    Xref = Xref.T
    Xref = torch.from_numpy(Xref).float()
    reproj_error = 0
    for match, cp in zip(matches[1:], poses[2:]):
        dist = (torch.norm(match_01[:, :2][:, None, :] - match[:, :2][None, :, :], dim=-1))
        if dist.numel() > 0:
            # print("dist.shape", dist.shape)
            m0to2_index = dist.argmin(1)
            keep = dist[torch.arange(match_01.shape[0]), m0to2_index] < 1
            if keep.sum() > 0:
                xref_in2 = rect_to_img(K, canonical_to_camera(Xref, cp.inverse()))
                reproj_error2 = torch.norm(match[m0to2_index][keep][:, 2:4] - xref_in2[keep], dim=-1)
                conf02 = match[m0to2_index][keep][:, -1]
                reproj_error += (reproj_error2 * conf02).sum() / (conf02.sum())

    return reproj_error


def find_optim_elev(elevs, nimgs, matches, K):
    errs = []
    for elev in elevs:
        err = 0
        cam_poses = gen_pose_hypothesis(elev)
        for start in range(nimgs - 1):
            batch_matches, batch_poses = [], []
            for i in range(start, nimgs + start):
                ci = i % nimgs
                batch_poses.append(cam_poses[ci])
            for j in range(nimgs - 1):
                key = f"{start}_{(start + j + 1) % nimgs}"
                match = matches[key]
                batch_matches.append(match)
            err += ba_error_general(K, batch_matches, batch_poses)
        errs.append(err)
    errs = torch.tensor(errs)
    optim_elev = elevs[torch.argmin(errs)].item()
    return optim_elev


def get_elev_est(feature_matching, min_elev=30, max_elev=150, K=None):
    flag = True
    matches = {}
    for i in range(4):
        for j in range(i + 1, 4):
            match_ij = feature_matching[f"{i}_{j}"]
            if len(match_ij) == 0:
                flag = False
            match_ji = np.concatenate([match_ij[:, 2:4], match_ij[:, 0:2], match_ij[:, 4:5]], axis=1)
            matches[f"{i}_{j}"] = torch.from_numpy(match_ij).float()
            matches[f"{j}_{i}"] = torch.from_numpy(match_ji).float()
    if not flag:
        loguru.logger.info("0 matches, could not estimate elevation")
        return None
    interval = 10
    elevs = np.arange(min_elev, max_elev, interval)
    optim_elev1 = find_optim_elev(elevs, 4, matches, K)

    elevs = np.arange(optim_elev1 - 10, optim_elev1 + 10, 1)
    elevs = elevs[elevs % 180 != 0]
    elevs = elevs[(elevs - 10) % 180 != 0]
    elevs = elevs[(elevs + 10) % 180 != 0]

    optim_elev2 = find_optim_elev(elevs, 4, matches, K)

    return optim_elev2


def elev_est_api(matcher, images, min_elev=30, max_elev=150, K=None):
    feature_matching = get_feature_matching(matcher, images)
    if K is None:
        loguru.logger.warning("K is not provided, using default K")
        K = np.array([[280.0, 0, 128.0],
                      [0, 280.0, 128.0],
                      [0, 0, 1]])
    K = torch.from_numpy(K).float()
    elev = get_elev_est(feature_matching, min_elev, max_elev, K)
    return elev