Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,869 Bytes
917fe92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import matplotlib.pyplot as plt
import warnings
import numpy as np
import cv2
import os
import os.path as osp
import imageio
from copy import deepcopy
import loguru
import torch
from ..models.loftr import LoFTR, default_cfg
from .utils3d import rect_to_img, canonical_to_camera, calc_pose
class ElevEstHelper:
_feature_matcher = None
@classmethod
def get_feature_matcher(cls, ckpt_path, device):
if cls._feature_matcher is None:
loguru.logger.info("Loading feature matcher...")
assert os.path.exists(ckpt_path)
_default_cfg = deepcopy(default_cfg)
_default_cfg['coarse']['temp_bug_fix'] = True # set to False when using the old ckpt
matcher = LoFTR(config=_default_cfg)
matcher.load_state_dict(torch.load(ckpt_path)['state_dict'])
matcher = matcher.eval().to(device)
cls._feature_matcher = matcher
return cls._feature_matcher
def mask_out_bkgd(img):
if img.shape[-1] == 4:
fg_mask = img[:, :, :3]
else:
loguru.logger.info("Image has no alpha channel, using thresholding to mask out background")
fg_mask = ~(img > 245).all(axis=-1)
return fg_mask
def get_feature_matching(matcher, images):
assert len(images) == 4
feature_matching = {}
masks = []
for i in range(4):
mask = mask_out_bkgd(images[i])
masks.append(mask)
for i in range(0, 4):
for j in range(i + 1, 4):
mask0 = masks[i]
mask1 = masks[j]
img0_raw = cv2.cvtColor(images[i], cv2.COLOR_RGB2GRAY)
img1_raw = cv2.cvtColor(images[j], cv2.COLOR_RGB2GRAY)
original_shape = img0_raw.shape
img0_raw_resized = cv2.resize(img0_raw, (480, 480))
img1_raw_resized = cv2.resize(img1_raw, (480, 480))
img0 = torch.from_numpy(img0_raw_resized)[None][None].cuda() / 255.
img1 = torch.from_numpy(img1_raw_resized)[None][None].cuda() / 255.
batch = {'image0': img0, 'image1': img1}
# Inference with LoFTR and get prediction
with torch.no_grad():
matcher(batch)
mkpts0 = batch['mkpts0_f'].cpu().numpy()
mkpts1 = batch['mkpts1_f'].cpu().numpy()
mconf = batch['mconf'].cpu().numpy()
mkpts0[:, 0] = mkpts0[:, 0] * original_shape[1] / 480
mkpts0[:, 1] = mkpts0[:, 1] * original_shape[0] / 480
mkpts1[:, 0] = mkpts1[:, 0] * original_shape[1] / 480
mkpts1[:, 1] = mkpts1[:, 1] * original_shape[0] / 480
keep0 = mask0[mkpts0[:, 1].astype(int), mkpts1[:, 0].astype(int)]
keep1 = mask1[mkpts1[:, 1].astype(int), mkpts1[:, 0].astype(int)]
keep = np.logical_and(keep0, keep1)
mkpts0 = mkpts0[keep]
mkpts1 = mkpts1[keep]
mconf = mconf[keep]
feature_matching[f"{i}_{j}"] = np.concatenate([mkpts0, mkpts1, mconf[:, None]], axis=1)
return feature_matching
def gen_pose_hypothesis(center_elevation):
elevations = np.radians(
[center_elevation, center_elevation - 10, center_elevation + 10, center_elevation, center_elevation]) # 45~120
azimuths = np.radians([30, 30, 30, 20, 40])
input_poses = calc_pose(elevations, azimuths, len(azimuths))
input_poses = input_poses[1:]
input_poses[..., 1] *= -1
input_poses[..., 2] *= -1
return input_poses
def ba_error_general(K, matches, poses):
projmat0 = K @ poses[0].inverse()[:3, :4]
projmat1 = K @ poses[1].inverse()[:3, :4]
match_01 = matches[0]
pts0 = match_01[:, :2]
pts1 = match_01[:, 2:4]
Xref = cv2.triangulatePoints(projmat0.cpu().numpy(), projmat1.cpu().numpy(),
pts0.cpu().numpy().T, pts1.cpu().numpy().T)
Xref = Xref[:3] / Xref[3:]
Xref = Xref.T
Xref = torch.from_numpy(Xref).float()
reproj_error = 0
for match, cp in zip(matches[1:], poses[2:]):
dist = (torch.norm(match_01[:, :2][:, None, :] - match[:, :2][None, :, :], dim=-1))
if dist.numel() > 0:
# print("dist.shape", dist.shape)
m0to2_index = dist.argmin(1)
keep = dist[torch.arange(match_01.shape[0]), m0to2_index] < 1
if keep.sum() > 0:
xref_in2 = rect_to_img(K, canonical_to_camera(Xref, cp.inverse()))
reproj_error2 = torch.norm(match[m0to2_index][keep][:, 2:4] - xref_in2[keep], dim=-1)
conf02 = match[m0to2_index][keep][:, -1]
reproj_error += (reproj_error2 * conf02).sum() / (conf02.sum())
return reproj_error
def find_optim_elev(elevs, nimgs, matches, K):
errs = []
for elev in elevs:
err = 0
cam_poses = gen_pose_hypothesis(elev)
for start in range(nimgs - 1):
batch_matches, batch_poses = [], []
for i in range(start, nimgs + start):
ci = i % nimgs
batch_poses.append(cam_poses[ci])
for j in range(nimgs - 1):
key = f"{start}_{(start + j + 1) % nimgs}"
match = matches[key]
batch_matches.append(match)
err += ba_error_general(K, batch_matches, batch_poses)
errs.append(err)
errs = torch.tensor(errs)
optim_elev = elevs[torch.argmin(errs)].item()
return optim_elev
def get_elev_est(feature_matching, min_elev=30, max_elev=150, K=None):
flag = True
matches = {}
for i in range(4):
for j in range(i + 1, 4):
match_ij = feature_matching[f"{i}_{j}"]
if len(match_ij) == 0:
flag = False
match_ji = np.concatenate([match_ij[:, 2:4], match_ij[:, 0:2], match_ij[:, 4:5]], axis=1)
matches[f"{i}_{j}"] = torch.from_numpy(match_ij).float()
matches[f"{j}_{i}"] = torch.from_numpy(match_ji).float()
if not flag:
loguru.logger.info("0 matches, could not estimate elevation")
return None
interval = 10
elevs = np.arange(min_elev, max_elev, interval)
optim_elev1 = find_optim_elev(elevs, 4, matches, K)
elevs = np.arange(optim_elev1 - 10, optim_elev1 + 10, 1)
elevs = elevs[elevs % 180 != 0]
elevs = elevs[(elevs - 10) % 180 != 0]
elevs = elevs[(elevs + 10) % 180 != 0]
optim_elev2 = find_optim_elev(elevs, 4, matches, K)
return optim_elev2
def elev_est_api(matcher, images, min_elev=30, max_elev=150, K=None):
feature_matching = get_feature_matching(matcher, images)
if K is None:
loguru.logger.warning("K is not provided, using default K")
K = np.array([[280.0, 0, 128.0],
[0, 280.0, 128.0],
[0, 0, 1]])
K = torch.from_numpy(K).float()
elev = get_elev_est(feature_matching, min_elev, max_elev, K)
return elev
|