|
|
|
|
|
title = "Grouping Techniques for Conversion" |
|
description = "This module focuses on grouping techniques for conversion between bases such as binary, octal, and hexadecimal." |
|
|
|
def generate_question(): |
|
import random |
|
|
|
|
|
from_base = random.choice([2, 8, 16]) |
|
to_base = 8 if from_base == 2 else 2 if from_base == 8 else 2 |
|
|
|
has_fraction = False |
|
|
|
if from_base == 2: |
|
|
|
number = ''.join(random.choice('01') for _ in range(random.randint(4, 8))) |
|
if random.choice([True, False]): |
|
has_fraction = True |
|
number += '.' + ''.join(random.choice('01') for _ in range(random.randint(1, 4))) |
|
elif from_base == 8: |
|
|
|
number = ''.join(random.choice('01234567') for _ in range(random.randint(2, 4))) |
|
if random.choice([True, False]): |
|
has_fraction = True |
|
number += '.' + ''.join(random.choice('01234567') for _ in range(random.randint(1, 3))) |
|
elif from_base == 16: |
|
|
|
number = ''.join(random.choice('0123456789ABCDEF') for _ in range(random.randint(2, 4))) |
|
if random.choice([True, False]): |
|
has_fraction = True |
|
number += '.' + ''.join(random.choice('0123456789ABCDEF') for _ in range(random.randint(1, 3))) |
|
|
|
def group_conversion(number, from_base, to_base): |
|
if from_base == 2 and to_base == 8: |
|
|
|
integer_part, *fraction_part = number.split('.') |
|
integer_result = oct(int(integer_part, 2))[2:] |
|
if fraction_part: |
|
fraction_result = ''.join([oct(int(f'{fraction_part[0][i:i+3]:0<3}', 2))[2:] for i in range(0, len(fraction_part[0]), 3)]) |
|
return f"{integer_result}.{fraction_result}" if has_fraction else integer_result |
|
return integer_result |
|
elif from_base == 2 and to_base == 16: |
|
|
|
integer_part, *fraction_part = number.split('.') |
|
integer_result = hex(int(integer_part, 2))[2:].upper() |
|
if fraction_part: |
|
fraction_result = ''.join([hex(int(f'{fraction_part[0][i:i+4]:0<4}', 2))[2:].upper() for i in range(0, len(fraction_part[0]), 4)]) |
|
return f"{integer_result}.{fraction_result}" if has_fraction else integer_result |
|
return integer_result |
|
elif from_base == 8 and to_base == 2: |
|
|
|
integer_part, *fraction_part = number.split('.') |
|
integer_result = ''.join([bin(int(digit, 8))[2:].zfill(3) for digit in integer_part]) |
|
if fraction_part: |
|
fraction_result = ''.join([bin(int(digit, 8))[2:].zfill(3) for digit in fraction_part[0]]) |
|
return f"{integer_result}.{fraction_result}" if has_fraction else integer_result |
|
return integer_result |
|
elif from_base == 16 and to_base == 2: |
|
|
|
integer_part, *fraction_part = number.split('.') |
|
integer_result = ''.join([bin(int(digit, 16))[2:].zfill(4) for digit in integer_part]) |
|
if fraction_part: |
|
fraction_result = ''.join([bin(int(digit, 16))[2:].zfill(4) for digit in fraction_part[0]]) |
|
return f"{integer_result}.{fraction_result}" if has_fraction else integer_result |
|
return integer_result |
|
|
|
correct_answer = group_conversion(number, from_base, to_base) |
|
options = {correct_answer} |
|
|
|
|
|
while len(options) < 4: |
|
if from_base == 2: |
|
invalid_number = ''.join(random.choice('01') for _ in range(len(number.replace('.', '')))) |
|
if has_fraction: |
|
invalid_number += '.' + ''.join(random.choice('01') for _ in range(len(number.split('.')[1]))) |
|
elif from_base == 8: |
|
invalid_number = ''.join(random.choice('01234567') for _ in range(len(number.replace('.', '')))) |
|
if has_fraction: |
|
invalid_number += '.' + ''.join(random.choice('01234567') for _ in range(len(number.split('.')[1]))) |
|
elif from_base == 16: |
|
invalid_number = ''.join(random.choice('0123456789ABCDEF') for _ in range(len(number.replace('.', '')))) |
|
if has_fraction: |
|
invalid_number += '.' + ''.join(random.choice('0123456789ABCDEF') for _ in range(len(number.split('.')[1]))) |
|
|
|
|
|
invalid_converted_number = group_conversion(invalid_number, from_base, to_base) |
|
if invalid_converted_number != correct_answer: |
|
options.add(invalid_converted_number) |
|
|
|
options = list(options) |
|
random.shuffle(options) |
|
|
|
question = f"Convert the number {number} from base {from_base} to base {to_base} using grouping technique." |
|
explanation = f"The number {number} in base {from_base} is {correct_answer} in base {to_base} using the grouping technique." |
|
step_by_step_solution = [ |
|
"Step 1: Group the digits of the number according to the conversion rules.", |
|
"Step 2: Convert each group to the corresponding digit in the target base.", |
|
"Step 3: Combine the digits to form the final answer." |
|
] |
|
|
|
return { |
|
"question": question, |
|
"options": options, |
|
"correct_answer": correct_answer, |
|
"explanation": explanation, |
|
"step_by_step_solution": step_by_step_solution |
|
} |
|
|