File size: 20,089 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 |
import logging
import random
import six
import chainer
import chainer.functions as F
import chainer.links as L
import numpy as np
import espnet.nets.chainer_backend.deterministic_embed_id as DL
from argparse import Namespace
from espnet.nets.ctc_prefix_score import CTCPrefixScore
from espnet.nets.e2e_asr_common import end_detect
CTC_SCORING_RATIO = 1.5
MAX_DECODER_OUTPUT = 5
class Decoder(chainer.Chain):
"""Decoder layer.
Args:
eprojs (int): Dimension of input variables from encoder.
odim (int): The output dimension.
dtype (str): Decoder type.
dlayers (int): Number of layers for decoder.
dunits (int): Dimension of input vector of decoder.
sos (int): Number to indicate the start of sequences.
eos (int): Number to indicate the end of sequences.
att (Module): Attention module defined at
`espnet.espnet.nets.chainer_backend.attentions`.
verbose (int): Verbosity level.
char_list (List[str]): List of all charactors.
labeldist (numpy.array): Distributed array of counted transcript length.
lsm_weight (float): Weight to use when calculating the training loss.
sampling_probability (float): Threshold for scheduled sampling.
"""
def __init__(
self,
eprojs,
odim,
dtype,
dlayers,
dunits,
sos,
eos,
att,
verbose=0,
char_list=None,
labeldist=None,
lsm_weight=0.0,
sampling_probability=0.0,
):
super(Decoder, self).__init__()
with self.init_scope():
self.embed = DL.EmbedID(odim, dunits)
self.rnn0 = (
L.StatelessLSTM(dunits + eprojs, dunits)
if dtype == "lstm"
else L.StatelessGRU(dunits + eprojs, dunits)
)
for i in six.moves.range(1, dlayers):
setattr(
self,
"rnn%d" % i,
L.StatelessLSTM(dunits, dunits)
if dtype == "lstm"
else L.StatelessGRU(dunits, dunits),
)
self.output = L.Linear(dunits, odim)
self.dtype = dtype
self.loss = None
self.att = att
self.dlayers = dlayers
self.dunits = dunits
self.sos = sos
self.eos = eos
self.verbose = verbose
self.char_list = char_list
# for label smoothing
self.labeldist = labeldist
self.vlabeldist = None
self.lsm_weight = lsm_weight
self.sampling_probability = sampling_probability
def rnn_forward(self, ey, z_list, c_list, z_prev, c_prev):
if self.dtype == "lstm":
c_list[0], z_list[0] = self.rnn0(c_prev[0], z_prev[0], ey)
for i in six.moves.range(1, self.dlayers):
c_list[i], z_list[i] = self["rnn%d" % i](
c_prev[i], z_prev[i], z_list[i - 1]
)
else:
if z_prev[0] is None:
xp = self.xp
with chainer.backends.cuda.get_device_from_id(self._device_id):
z_prev[0] = chainer.Variable(
xp.zeros((ey.shape[0], self.dunits), dtype=ey.dtype)
)
z_list[0] = self.rnn0(z_prev[0], ey)
for i in six.moves.range(1, self.dlayers):
if z_prev[i] is None:
xp = self.xp
with chainer.backends.cuda.get_device_from_id(self._device_id):
z_prev[i] = chainer.Variable(
xp.zeros(
(z_list[i - 1].shape[0], self.dunits),
dtype=z_list[i - 1].dtype,
)
)
z_list[i] = self["rnn%d" % i](z_prev[i], z_list[i - 1])
return z_list, c_list
def __call__(self, hs, ys):
"""Core function of Decoder layer.
Args:
hs (list of chainer.Variable | N-dimension array):
Input variable from encoder.
ys (list of chainer.Variable | N-dimension array):
Input variable of decoder.
Returns:
chainer.Variable: A variable holding a scalar array of the training loss.
chainer.Variable: A variable holding a scalar array of the accuracy.
"""
self.loss = None
# prepare input and output word sequences with sos/eos IDs
eos = self.xp.array([self.eos], "i")
sos = self.xp.array([self.sos], "i")
ys_in = [F.concat([sos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]
# padding for ys with -1
# pys: utt x olen
pad_ys_in = F.pad_sequence(ys_in, padding=self.eos)
pad_ys_out = F.pad_sequence(ys_out, padding=-1)
# get dim, length info
batch = pad_ys_out.shape[0]
olength = pad_ys_out.shape[1]
logging.info(
self.__class__.__name__
+ " input lengths: "
+ str(self.xp.array([h.shape[0] for h in hs]))
)
logging.info(
self.__class__.__name__
+ " output lengths: "
+ str(self.xp.array([y.shape[0] for y in ys_out]))
)
# initialization
c_list = [None] # list of cell state of each layer
z_list = [None] # list of hidden state of each layer
for _ in six.moves.range(1, self.dlayers):
c_list.append(None)
z_list.append(None)
att_w = None
z_all = []
self.att.reset() # reset pre-computation of h
# pre-computation of embedding
eys = self.embed(pad_ys_in) # utt x olen x zdim
eys = F.separate(eys, axis=1)
# loop for an output sequence
for i in six.moves.range(olength):
att_c, att_w = self.att(hs, z_list[0], att_w)
if i > 0 and random.random() < self.sampling_probability:
logging.info(" scheduled sampling ")
z_out = self.output(z_all[-1])
z_out = F.argmax(F.log_softmax(z_out), axis=1)
z_out = self.embed(z_out)
ey = F.hstack((z_out, att_c)) # utt x (zdim + hdim)
else:
ey = F.hstack((eys[i], att_c)) # utt x (zdim + hdim)
z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_list, c_list)
z_all.append(z_list[-1])
z_all = F.stack(z_all, axis=1).reshape(batch * olength, self.dunits)
# compute loss
y_all = self.output(z_all)
self.loss = F.softmax_cross_entropy(y_all, F.flatten(pad_ys_out))
# -1: eos, which is removed in the loss computation
self.loss *= np.mean([len(x) for x in ys_in]) - 1
acc = F.accuracy(y_all, F.flatten(pad_ys_out), ignore_label=-1)
logging.info("att loss:" + str(self.loss.data))
# show predicted character sequence for debug
if self.verbose > 0 and self.char_list is not None:
y_hat = y_all.reshape(batch, olength, -1)
y_true = pad_ys_out
for (i, y_hat_), y_true_ in zip(enumerate(y_hat.data), y_true.data):
if i == MAX_DECODER_OUTPUT:
break
idx_hat = self.xp.argmax(y_hat_[y_true_ != -1], axis=1)
idx_true = y_true_[y_true_ != -1]
seq_hat = [self.char_list[int(idx)] for idx in idx_hat]
seq_true = [self.char_list[int(idx)] for idx in idx_true]
seq_hat = "".join(seq_hat).replace("<space>", " ")
seq_true = "".join(seq_true).replace("<space>", " ")
logging.info("groundtruth[%d]: " % i + seq_true)
logging.info("prediction [%d]: " % i + seq_hat)
if self.labeldist is not None:
if self.vlabeldist is None:
self.vlabeldist = chainer.Variable(self.xp.asarray(self.labeldist))
loss_reg = -F.sum(
F.scale(F.log_softmax(y_all), self.vlabeldist, axis=1)
) / len(ys_in)
self.loss = (1.0 - self.lsm_weight) * self.loss + self.lsm_weight * loss_reg
return self.loss, acc
def recognize_beam(self, h, lpz, recog_args, char_list, rnnlm=None):
"""Beam search implementation.
Args:
h (chainer.Variable): One of the output from the encoder.
lpz (chainer.Variable | None): Result of net propagation.
recog_args (Namespace): The argument.
char_list (List[str]): List of all charactors.
rnnlm (Module): RNNLM module. Defined at `espnet.lm.chainer_backend.lm`
Returns:
List[Dict[str,Any]]: Result of recognition.
"""
logging.info("input lengths: " + str(h.shape[0]))
# initialization
c_list = [None] # list of cell state of each layer
z_list = [None] # list of hidden state of each layer
for _ in six.moves.range(1, self.dlayers):
c_list.append(None)
z_list.append(None)
a = None
self.att.reset() # reset pre-computation of h
# search parms
beam = recog_args.beam_size
penalty = recog_args.penalty
ctc_weight = recog_args.ctc_weight
# preprate sos
y = self.xp.full(1, self.sos, "i")
if recog_args.maxlenratio == 0:
maxlen = h.shape[0]
else:
# maxlen >= 1
maxlen = max(1, int(recog_args.maxlenratio * h.shape[0]))
minlen = int(recog_args.minlenratio * h.shape[0])
logging.info("max output length: " + str(maxlen))
logging.info("min output length: " + str(minlen))
# initialize hypothesis
if rnnlm:
hyp = {
"score": 0.0,
"yseq": [y],
"c_prev": c_list,
"z_prev": z_list,
"a_prev": a,
"rnnlm_prev": None,
}
else:
hyp = {
"score": 0.0,
"yseq": [y],
"c_prev": c_list,
"z_prev": z_list,
"a_prev": a,
}
if lpz is not None:
ctc_prefix_score = CTCPrefixScore(lpz, 0, self.eos, self.xp)
hyp["ctc_state_prev"] = ctc_prefix_score.initial_state()
hyp["ctc_score_prev"] = 0.0
if ctc_weight != 1.0:
# pre-pruning based on attention scores
ctc_beam = min(lpz.shape[-1], int(beam * CTC_SCORING_RATIO))
else:
ctc_beam = lpz.shape[-1]
hyps = [hyp]
ended_hyps = []
for i in six.moves.range(maxlen):
logging.debug("position " + str(i))
hyps_best_kept = []
for hyp in hyps:
ey = self.embed(hyp["yseq"][i]) # utt list (1) x zdim
att_c, att_w = self.att([h], hyp["z_prev"][0], hyp["a_prev"])
ey = F.hstack((ey, att_c)) # utt(1) x (zdim + hdim)
z_list, c_list = self.rnn_forward(
ey, z_list, c_list, hyp["z_prev"], hyp["c_prev"]
)
# get nbest local scores and their ids
local_att_scores = F.log_softmax(self.output(z_list[-1])).data
if rnnlm:
rnnlm_state, local_lm_scores = rnnlm.predict(
hyp["rnnlm_prev"], hyp["yseq"][i]
)
local_scores = (
local_att_scores + recog_args.lm_weight * local_lm_scores
)
else:
local_scores = local_att_scores
if lpz is not None:
local_best_ids = self.xp.argsort(local_scores, axis=1)[0, ::-1][
:ctc_beam
]
ctc_scores, ctc_states = ctc_prefix_score(
hyp["yseq"], local_best_ids, hyp["ctc_state_prev"]
)
local_scores = (1.0 - ctc_weight) * local_att_scores[
:, local_best_ids
] + ctc_weight * (ctc_scores - hyp["ctc_score_prev"])
if rnnlm:
local_scores += (
recog_args.lm_weight * local_lm_scores[:, local_best_ids]
)
joint_best_ids = self.xp.argsort(local_scores, axis=1)[0, ::-1][
:beam
]
local_best_scores = local_scores[:, joint_best_ids]
local_best_ids = local_best_ids[joint_best_ids]
else:
local_best_ids = self.xp.argsort(local_scores, axis=1)[0, ::-1][
:beam
]
local_best_scores = local_scores[:, local_best_ids]
for j in six.moves.range(beam):
new_hyp = {}
# do not copy {z,c}_list directly
new_hyp["z_prev"] = z_list[:]
new_hyp["c_prev"] = c_list[:]
new_hyp["a_prev"] = att_w
new_hyp["score"] = hyp["score"] + local_best_scores[0, j]
new_hyp["yseq"] = [0] * (1 + len(hyp["yseq"]))
new_hyp["yseq"][: len(hyp["yseq"])] = hyp["yseq"]
new_hyp["yseq"][len(hyp["yseq"])] = self.xp.full(
1, local_best_ids[j], "i"
)
if rnnlm:
new_hyp["rnnlm_prev"] = rnnlm_state
if lpz is not None:
new_hyp["ctc_state_prev"] = ctc_states[joint_best_ids[j]]
new_hyp["ctc_score_prev"] = ctc_scores[joint_best_ids[j]]
# will be (2 x beam) hyps at most
hyps_best_kept.append(new_hyp)
hyps_best_kept = sorted(
hyps_best_kept, key=lambda x: x["score"], reverse=True
)[:beam]
# sort and get nbest
hyps = hyps_best_kept
logging.debug("number of pruned hypotheses: " + str(len(hyps)))
logging.debug(
"best hypo: "
+ "".join([char_list[int(x)] for x in hyps[0]["yseq"][1:]]).replace(
"<space>", " "
)
)
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
logging.info("adding <eos> in the last position in the loop")
for hyp in hyps:
hyp["yseq"].append(self.xp.full(1, self.eos, "i"))
# add ended hypotheses to a final list,
# and removed them from current hypotheses
# (this will be a problem, number of hyps < beam)
remained_hyps = []
for hyp in hyps:
if hyp["yseq"][-1] == self.eos:
# only store the sequence that has more than minlen outputs
# also add penalty
if len(hyp["yseq"]) > minlen:
hyp["score"] += (i + 1) * penalty
if rnnlm: # Word LM needs to add final <eos> score
hyp["score"] += recog_args.lm_weight * rnnlm.final(
hyp["rnnlm_prev"]
)
ended_hyps.append(hyp)
else:
remained_hyps.append(hyp)
# end detection
if end_detect(ended_hyps, i) and recog_args.maxlenratio == 0.0:
logging.info("end detected at %d", i)
break
hyps = remained_hyps
if len(hyps) > 0:
logging.debug("remaining hypotheses: " + str(len(hyps)))
else:
logging.info("no hypothesis. Finish decoding.")
break
for hyp in hyps:
logging.debug(
"hypo: "
+ "".join([char_list[int(x)] for x in hyp["yseq"][1:]]).replace(
"<space>", " "
)
)
logging.debug("number of ended hypotheses: " + str(len(ended_hyps)))
nbest_hyps = sorted(ended_hyps, key=lambda x: x["score"], reverse=True)[
: min(len(ended_hyps), recog_args.nbest)
]
# check number of hypotheses
if len(nbest_hyps) == 0:
logging.warning(
"there is no N-best results, "
"perform recognition again with smaller minlenratio."
)
# should copy because Namespace will be overwritten globally
recog_args = Namespace(**vars(recog_args))
recog_args.minlenratio = max(0.0, recog_args.minlenratio - 0.1)
return self.recognize_beam(h, lpz, recog_args, char_list, rnnlm)
logging.info("total log probability: " + str(nbest_hyps[0]["score"]))
logging.info(
"normalized log probability: "
+ str(nbest_hyps[0]["score"] / len(nbest_hyps[0]["yseq"]))
)
return nbest_hyps
def calculate_all_attentions(self, hs, ys):
"""Calculate all of attentions.
Args:
hs (list of chainer.Variable | N-dimensional array):
Input variable from encoder.
ys (list of chainer.Variable | N-dimensional array):
Input variable of decoder.
Returns:
chainer.Variable: List of attention weights.
"""
# prepare input and output word sequences with sos/eos IDs
eos = self.xp.array([self.eos], "i")
sos = self.xp.array([self.sos], "i")
ys_in = [F.concat([sos, y], axis=0) for y in ys]
ys_out = [F.concat([y, eos], axis=0) for y in ys]
# padding for ys with -1
# pys: utt x olen
pad_ys_in = F.pad_sequence(ys_in, padding=self.eos)
pad_ys_out = F.pad_sequence(ys_out, padding=-1)
# get length info
olength = pad_ys_out.shape[1]
# initialization
c_list = [None] # list of cell state of each layer
z_list = [None] # list of hidden state of each layer
for _ in six.moves.range(1, self.dlayers):
c_list.append(None)
z_list.append(None)
att_w = None
att_ws = []
self.att.reset() # reset pre-computation of h
# pre-computation of embedding
eys = self.embed(pad_ys_in) # utt x olen x zdim
eys = F.separate(eys, axis=1)
# loop for an output sequence
for i in six.moves.range(olength):
att_c, att_w = self.att(hs, z_list[0], att_w)
ey = F.hstack((eys[i], att_c)) # utt x (zdim + hdim)
z_list, c_list = self.rnn_forward(ey, z_list, c_list, z_list, c_list)
att_ws.append(att_w) # for debugging
att_ws = F.stack(att_ws, axis=1)
att_ws.to_cpu()
return att_ws.data
def decoder_for(args, odim, sos, eos, att, labeldist):
"""Return the decoding layer corresponding to the args.
Args:
args (Namespace): The program arguments.
odim (int): The output dimension.
sos (int): Number to indicate the start of sequences.
eos (int) Number to indicate the end of sequences.
att (Module):
Attention module defined at `espnet.nets.chainer_backend.attentions`.
labeldist (numpy.array): Distributed array of length od transcript.
Returns:
chainer.Chain: The decoder module.
"""
return Decoder(
args.eprojs,
odim,
args.dtype,
args.dlayers,
args.dunits,
sos,
eos,
att,
args.verbose,
args.char_list,
labeldist,
args.lsm_weight,
args.sampling_probability,
)
|