File size: 15,129 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
#!/usr/bin/env python3
# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
# This code is ported from the following implementation written in Torch.
# https://github.com/chainer/chainer/blob/master/examples/ptb/train_ptb_custom_loop.py
"""LM training in pytorch."""
import copy
import json
import logging
import numpy as np
import torch
import torch.nn as nn
from torch.nn.parallel import data_parallel
from chainer import Chain
from chainer.dataset import convert
from chainer import reporter
from chainer import training
from chainer.training import extensions
from espnet.lm.lm_utils import count_tokens
from espnet.lm.lm_utils import load_dataset
from espnet.lm.lm_utils import MakeSymlinkToBestModel
from espnet.lm.lm_utils import ParallelSentenceIterator
from espnet.lm.lm_utils import read_tokens
from espnet.nets.lm_interface import dynamic_import_lm
from espnet.nets.lm_interface import LMInterface
from espnet.optimizer.factory import dynamic_import_optimizer
from espnet.scheduler.pytorch import PyTorchScheduler
from espnet.scheduler.scheduler import dynamic_import_scheduler
from espnet.asr.asr_utils import snapshot_object
from espnet.asr.asr_utils import torch_load
from espnet.asr.asr_utils import torch_resume
from espnet.asr.asr_utils import torch_snapshot
from espnet.utils.training.tensorboard_logger import TensorboardLogger
from tensorboardX import SummaryWriter
from espnet.utils.deterministic_utils import set_deterministic_pytorch
from espnet.utils.training.evaluator import BaseEvaluator
from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop
def compute_perplexity(result):
"""Compute and add the perplexity to the LogReport.
:param dict result: The current observations
"""
# Routine to rewrite the result dictionary of LogReport to add perplexity values
result["perplexity"] = np.exp(result["main/nll"] / result["main/count"])
if "validation/main/nll" in result:
result["val_perplexity"] = np.exp(
result["validation/main/nll"] / result["validation/main/count"]
)
class Reporter(Chain):
"""Dummy module to use chainer's trainer."""
def report(self, loss):
"""Report nothing."""
pass
def concat_examples(batch, device=None, padding=None):
"""Concat examples in minibatch.
:param np.ndarray batch: The batch to concatenate
:param int device: The device to send to
:param Tuple[int,int] padding: The padding to use
:return: (inputs, targets)
:rtype (torch.Tensor, torch.Tensor)
"""
x, t = convert.concat_examples(batch, padding=padding)
x = torch.from_numpy(x)
t = torch.from_numpy(t)
if device is not None and device >= 0:
x = x.cuda(device)
t = t.cuda(device)
return x, t
class BPTTUpdater(training.StandardUpdater):
"""An updater for a pytorch LM."""
def __init__(
self,
train_iter,
model,
optimizer,
schedulers,
device,
gradclip=None,
use_apex=False,
accum_grad=1,
):
"""Initialize class.
Args:
train_iter (chainer.dataset.Iterator): The train iterator
model (LMInterface) : The model to update
optimizer (torch.optim.Optimizer): The optimizer for training
schedulers (espnet.scheduler.scheduler.SchedulerInterface):
The schedulers of `optimizer`
device (int): The device id
gradclip (float): The gradient clipping value to use
use_apex (bool): The flag to use Apex in backprop.
accum_grad (int): The number of gradient accumulation.
"""
super(BPTTUpdater, self).__init__(train_iter, optimizer)
self.model = model
self.device = device
self.gradclip = gradclip
self.use_apex = use_apex
self.scheduler = PyTorchScheduler(schedulers, optimizer)
self.accum_grad = accum_grad
# The core part of the update routine can be customized by overriding.
def update_core(self):
"""Update the model."""
# When we pass one iterator and optimizer to StandardUpdater.__init__,
# they are automatically named 'main'.
train_iter = self.get_iterator("main")
optimizer = self.get_optimizer("main")
# Progress the dataset iterator for sentences at each iteration.
self.model.zero_grad() # Clear the parameter gradients
accum = {"loss": 0.0, "nll": 0.0, "count": 0}
for _ in range(self.accum_grad):
batch = train_iter.__next__()
# Concatenate the token IDs to matrices and send them to the device
# self.converter does this job
# (it is chainer.dataset.concat_examples by default)
x, t = concat_examples(batch, device=self.device[0], padding=(0, -100))
if self.device[0] == -1:
loss, nll, count = self.model(x, t)
else:
# apex does not support torch.nn.DataParallel
loss, nll, count = data_parallel(self.model, (x, t), self.device)
# backward
loss = loss.mean() / self.accum_grad
if self.use_apex:
from apex import amp
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward() # Backprop
# accumulate stats
accum["loss"] += float(loss)
accum["nll"] += float(nll.sum())
accum["count"] += int(count.sum())
for k, v in accum.items():
reporter.report({k: v}, optimizer.target)
if self.gradclip is not None:
nn.utils.clip_grad_norm_(self.model.parameters(), self.gradclip)
optimizer.step() # Update the parameters
self.scheduler.step(n_iter=self.iteration)
class LMEvaluator(BaseEvaluator):
"""A custom evaluator for a pytorch LM."""
def __init__(self, val_iter, eval_model, reporter, device):
"""Initialize class.
:param chainer.dataset.Iterator val_iter : The validation iterator
:param LMInterface eval_model : The model to evaluate
:param chainer.Reporter reporter : The observations reporter
:param int device : The device id to use
"""
super(LMEvaluator, self).__init__(val_iter, reporter, device=-1)
self.model = eval_model
self.device = device
def evaluate(self):
"""Evaluate the model."""
val_iter = self.get_iterator("main")
loss = 0
nll = 0
count = 0
self.model.eval()
with torch.no_grad():
for batch in copy.copy(val_iter):
x, t = concat_examples(batch, device=self.device[0], padding=(0, -100))
if self.device[0] == -1:
l, n, c = self.model(x, t)
else:
# apex does not support torch.nn.DataParallel
l, n, c = data_parallel(self.model, (x, t), self.device)
loss += float(l.sum())
nll += float(n.sum())
count += int(c.sum())
self.model.train()
# report validation loss
observation = {}
with reporter.report_scope(observation):
reporter.report({"loss": loss}, self.model.reporter)
reporter.report({"nll": nll}, self.model.reporter)
reporter.report({"count": count}, self.model.reporter)
return observation
def train(args):
"""Train with the given args.
:param Namespace args: The program arguments
:param type model_class: LMInterface class for training
"""
model_class = dynamic_import_lm(args.model_module, args.backend)
assert issubclass(model_class, LMInterface), "model should implement LMInterface"
# display torch version
logging.info("torch version = " + torch.__version__)
set_deterministic_pytorch(args)
# check cuda and cudnn availability
if not torch.cuda.is_available():
logging.warning("cuda is not available")
# get special label ids
unk = args.char_list_dict["<unk>"]
eos = args.char_list_dict["<eos>"]
# read tokens as a sequence of sentences
val, n_val_tokens, n_val_oovs = load_dataset(
args.valid_label, args.char_list_dict, args.dump_hdf5_path
)
train, n_train_tokens, n_train_oovs = load_dataset(
args.train_label, args.char_list_dict, args.dump_hdf5_path
)
logging.info("#vocab = " + str(args.n_vocab))
logging.info("#sentences in the training data = " + str(len(train)))
logging.info("#tokens in the training data = " + str(n_train_tokens))
logging.info(
"oov rate in the training data = %.2f %%"
% (n_train_oovs / n_train_tokens * 100)
)
logging.info("#sentences in the validation data = " + str(len(val)))
logging.info("#tokens in the validation data = " + str(n_val_tokens))
logging.info(
"oov rate in the validation data = %.2f %%" % (n_val_oovs / n_val_tokens * 100)
)
use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0
# Create the dataset iterators
batch_size = args.batchsize * max(args.ngpu, 1)
if batch_size * args.accum_grad > args.batchsize:
logging.info(
f"batch size is automatically increased "
f"({args.batchsize} -> {batch_size * args.accum_grad})"
)
train_iter = ParallelSentenceIterator(
train,
batch_size,
max_length=args.maxlen,
sos=eos,
eos=eos,
shuffle=not use_sortagrad,
)
val_iter = ParallelSentenceIterator(
val, batch_size, max_length=args.maxlen, sos=eos, eos=eos, repeat=False
)
epoch_iters = int(len(train_iter.batch_indices) / args.accum_grad)
logging.info("#iterations per epoch = %d" % epoch_iters)
logging.info("#total iterations = " + str(args.epoch * epoch_iters))
# Prepare an RNNLM model
if args.train_dtype in ("float16", "float32", "float64"):
dtype = getattr(torch, args.train_dtype)
else:
dtype = torch.float32
model = model_class(args.n_vocab, args).to(dtype=dtype)
if args.ngpu > 0:
model.to("cuda")
gpu_id = list(range(args.ngpu))
else:
gpu_id = [-1]
# Save model conf to json
model_conf = args.outdir + "/model.json"
with open(model_conf, "wb") as f:
logging.info("writing a model config file to " + model_conf)
f.write(
json.dumps(vars(args), indent=4, ensure_ascii=False, sort_keys=True).encode(
"utf_8"
)
)
logging.warning(
"num. model params: {:,} (num. trained: {:,} ({:.1f}%))".format(
sum(p.numel() for p in model.parameters()),
sum(p.numel() for p in model.parameters() if p.requires_grad),
sum(p.numel() for p in model.parameters() if p.requires_grad)
* 100.0
/ sum(p.numel() for p in model.parameters()),
)
)
# Set up an optimizer
opt_class = dynamic_import_optimizer(args.opt, args.backend)
optimizer = opt_class.from_args(model.parameters(), args)
if args.schedulers is None:
schedulers = []
else:
schedulers = [dynamic_import_scheduler(v)(k, args) for k, v in args.schedulers]
# setup apex.amp
if args.train_dtype in ("O0", "O1", "O2", "O3"):
try:
from apex import amp
except ImportError as e:
logging.error(
f"You need to install apex for --train-dtype {args.train_dtype}. "
"See https://github.com/NVIDIA/apex#linux"
)
raise e
model, optimizer = amp.initialize(model, optimizer, opt_level=args.train_dtype)
use_apex = True
else:
use_apex = False
# FIXME: TOO DIRTY HACK
reporter = Reporter()
setattr(model, "reporter", reporter)
setattr(optimizer, "target", reporter)
setattr(optimizer, "serialize", lambda s: reporter.serialize(s))
updater = BPTTUpdater(
train_iter,
model,
optimizer,
schedulers,
gpu_id,
gradclip=args.gradclip,
use_apex=use_apex,
accum_grad=args.accum_grad,
)
trainer = training.Trainer(updater, (args.epoch, "epoch"), out=args.outdir)
trainer.extend(LMEvaluator(val_iter, model, reporter, device=gpu_id))
trainer.extend(
extensions.LogReport(
postprocess=compute_perplexity,
trigger=(args.report_interval_iters, "iteration"),
)
)
trainer.extend(
extensions.PrintReport(
[
"epoch",
"iteration",
"main/loss",
"perplexity",
"val_perplexity",
"elapsed_time",
]
),
trigger=(args.report_interval_iters, "iteration"),
)
trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters))
# Save best models
trainer.extend(torch_snapshot(filename="snapshot.ep.{.updater.epoch}"))
trainer.extend(snapshot_object(model, "rnnlm.model.{.updater.epoch}"))
# T.Hori: MinValueTrigger should be used, but it fails when resuming
trainer.extend(MakeSymlinkToBestModel("validation/main/loss", "rnnlm.model"))
if use_sortagrad:
trainer.extend(
ShufflingEnabler([train_iter]),
trigger=(args.sortagrad if args.sortagrad != -1 else args.epoch, "epoch"),
)
if args.resume:
logging.info("resumed from %s" % args.resume)
torch_resume(args.resume, trainer)
set_early_stop(trainer, args, is_lm=True)
if args.tensorboard_dir is not None and args.tensorboard_dir != "":
writer = SummaryWriter(args.tensorboard_dir)
trainer.extend(
TensorboardLogger(writer), trigger=(args.report_interval_iters, "iteration")
)
trainer.run()
check_early_stop(trainer, args.epoch)
# compute perplexity for test set
if args.test_label:
logging.info("test the best model")
torch_load(args.outdir + "/rnnlm.model.best", model)
test = read_tokens(args.test_label, args.char_list_dict)
n_test_tokens, n_test_oovs = count_tokens(test, unk)
logging.info("#sentences in the test data = " + str(len(test)))
logging.info("#tokens in the test data = " + str(n_test_tokens))
logging.info(
"oov rate in the test data = %.2f %%" % (n_test_oovs / n_test_tokens * 100)
)
test_iter = ParallelSentenceIterator(
test, batch_size, max_length=args.maxlen, sos=eos, eos=eos, repeat=False
)
evaluator = LMEvaluator(test_iter, model, reporter, device=gpu_id)
result = evaluator()
compute_perplexity(result)
logging.info(f"test perplexity: {result['perplexity']}")
|