File size: 18,302 Bytes
ad16788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#!/usr/bin/env python3

# Copyright 2017 Johns Hopkins University (Shinji Watanabe)
#  Apache 2.0  (http://www.apache.org/licenses/LICENSE-2.0)

# This code is ported from the following implementation written in Torch.
# https://github.com/chainer/chainer/blob/master/examples/ptb/train_ptb_custom_loop.py


import copy
import json
import logging
import numpy as np
import six

import chainer
from chainer.dataset import convert
import chainer.functions as F
import chainer.links as L

# for classifier link
from chainer.functions.loss import softmax_cross_entropy
from chainer import link
from chainer import reporter
from chainer import training
from chainer.training import extensions

from espnet.lm.lm_utils import compute_perplexity
from espnet.lm.lm_utils import count_tokens
from espnet.lm.lm_utils import MakeSymlinkToBestModel
from espnet.lm.lm_utils import ParallelSentenceIterator
from espnet.lm.lm_utils import read_tokens

import espnet.nets.chainer_backend.deterministic_embed_id as DL
from espnet.nets.lm_interface import LMInterface
from espnet.optimizer.factory import dynamic_import_optimizer
from espnet.scheduler.chainer import ChainerScheduler
from espnet.scheduler.scheduler import dynamic_import_scheduler

from espnet.utils.training.tensorboard_logger import TensorboardLogger
from tensorboardX import SummaryWriter

from espnet.utils.deterministic_utils import set_deterministic_chainer
from espnet.utils.training.evaluator import BaseEvaluator
from espnet.utils.training.iterators import ShufflingEnabler
from espnet.utils.training.train_utils import check_early_stop
from espnet.utils.training.train_utils import set_early_stop


# TODO(karita): reimplement RNNLM with new interface
class DefaultRNNLM(LMInterface, link.Chain):
    """Default RNNLM wrapper to compute reduce framewise loss values.

    Args:
        n_vocab (int): The size of the vocabulary
        args (argparse.Namespace): configurations. see `add_arguments`
    """

    @staticmethod
    def add_arguments(parser):
        parser.add_argument(
            "--type",
            type=str,
            default="lstm",
            nargs="?",
            choices=["lstm", "gru"],
            help="Which type of RNN to use",
        )
        parser.add_argument(
            "--layer", "-l", type=int, default=2, help="Number of hidden layers"
        )
        parser.add_argument(
            "--unit", "-u", type=int, default=650, help="Number of hidden units"
        )
        return parser


class ClassifierWithState(link.Chain):
    """A wrapper for a chainer RNNLM

    :param link.Chain predictor : The RNNLM
    :param function lossfun: The loss function to use
    :param int/str label_key:
    """

    def __init__(
        self,
        predictor,
        lossfun=softmax_cross_entropy.softmax_cross_entropy,
        label_key=-1,
    ):
        if not (isinstance(label_key, (int, str))):
            raise TypeError("label_key must be int or str, but is %s" % type(label_key))

        super(ClassifierWithState, self).__init__()
        self.lossfun = lossfun
        self.y = None
        self.loss = None
        self.label_key = label_key

        with self.init_scope():
            self.predictor = predictor

    def __call__(self, state, *args, **kwargs):
        """Computes the loss value for an input and label pair.

            It also computes accuracy and stores it to the attribute.
            When ``label_key`` is ``int``, the corresponding element in ``args``
            is treated as ground truth labels. And when it is ``str``, the
            element in ``kwargs`` is used.
            The all elements of ``args`` and ``kwargs`` except the groundtruth
            labels are features.
            It feeds features to the predictor and compare the result
            with ground truth labels.

        :param state : The LM state
        :param list[chainer.Variable] args : Input minibatch
        :param dict[chainer.Variable] kwargs : Input minibatch
        :return loss value
        :rtype chainer.Variable
        """

        if isinstance(self.label_key, int):
            if not (-len(args) <= self.label_key < len(args)):
                msg = "Label key %d is out of bounds" % self.label_key
                raise ValueError(msg)
            t = args[self.label_key]
            if self.label_key == -1:
                args = args[:-1]
            else:
                args = args[: self.label_key] + args[self.label_key + 1 :]
        elif isinstance(self.label_key, str):
            if self.label_key not in kwargs:
                msg = 'Label key "%s" is not found' % self.label_key
                raise ValueError(msg)
            t = kwargs[self.label_key]
            del kwargs[self.label_key]

        self.y = None
        self.loss = None
        state, self.y = self.predictor(state, *args, **kwargs)
        self.loss = self.lossfun(self.y, t)
        return state, self.loss

    def predict(self, state, x):
        """Predict log probabilities for given state and input x using the predictor

        :param state : the state
        :param x : the input
        :return a tuple (state, log prob vector)
        :rtype cupy/numpy array
        """
        if hasattr(self.predictor, "normalized") and self.predictor.normalized:
            return self.predictor(state, x)
        else:
            state, z = self.predictor(state, x)
            return state, F.log_softmax(z).data

    def final(self, state):
        """Predict final log probabilities for given state using the predictor

        :param state : the state
        :return log probability vector
        :rtype cupy/numpy array

        """
        if hasattr(self.predictor, "final"):
            return self.predictor.final(state)
        else:
            return 0.0


# Definition of a recurrent net for language modeling
class RNNLM(chainer.Chain):
    """A chainer RNNLM

    :param int n_vocab: The size of the vocabulary
    :param int n_layers: The number of layers to create
    :param int n_units: The number of units per layer
    :param str type: The RNN type
    """

    def __init__(self, n_vocab, n_layers, n_units, typ="lstm"):
        super(RNNLM, self).__init__()
        with self.init_scope():
            self.embed = DL.EmbedID(n_vocab, n_units)
            self.rnn = (
                chainer.ChainList(
                    *[L.StatelessLSTM(n_units, n_units) for _ in range(n_layers)]
                )
                if typ == "lstm"
                else chainer.ChainList(
                    *[L.StatelessGRU(n_units, n_units) for _ in range(n_layers)]
                )
            )
            self.lo = L.Linear(n_units, n_vocab)

        for param in self.params():
            param.data[...] = np.random.uniform(-0.1, 0.1, param.data.shape)
        self.n_layers = n_layers
        self.n_units = n_units
        self.typ = typ

    def __call__(self, state, x):
        if state is None:
            if self.typ == "lstm":
                state = {"c": [None] * self.n_layers, "h": [None] * self.n_layers}
            else:
                state = {"h": [None] * self.n_layers}

        h = [None] * self.n_layers
        emb = self.embed(x)
        if self.typ == "lstm":
            c = [None] * self.n_layers
            c[0], h[0] = self.rnn[0](state["c"][0], state["h"][0], F.dropout(emb))
            for n in six.moves.range(1, self.n_layers):
                c[n], h[n] = self.rnn[n](
                    state["c"][n], state["h"][n], F.dropout(h[n - 1])
                )
            state = {"c": c, "h": h}
        else:
            if state["h"][0] is None:
                xp = self.xp
                with chainer.backends.cuda.get_device_from_id(self._device_id):
                    state["h"][0] = chainer.Variable(
                        xp.zeros((emb.shape[0], self.n_units), dtype=emb.dtype)
                    )
            h[0] = self.rnn[0](state["h"][0], F.dropout(emb))
            for n in six.moves.range(1, self.n_layers):
                if state["h"][n] is None:
                    xp = self.xp
                    with chainer.backends.cuda.get_device_from_id(self._device_id):
                        state["h"][n] = chainer.Variable(
                            xp.zeros(
                                (h[n - 1].shape[0], self.n_units), dtype=h[n - 1].dtype
                            )
                        )
                h[n] = self.rnn[n](state["h"][n], F.dropout(h[n - 1]))
            state = {"h": h}
        y = self.lo(F.dropout(h[-1]))
        return state, y


class BPTTUpdater(training.updaters.StandardUpdater):
    """An updater for a chainer LM

    :param chainer.dataset.Iterator train_iter : The train iterator
    :param optimizer:
    :param schedulers:
    :param int device : The device id
    :param int accum_grad :
    """

    def __init__(self, train_iter, optimizer, schedulers, device, accum_grad):
        super(BPTTUpdater, self).__init__(train_iter, optimizer, device=device)
        self.scheduler = ChainerScheduler(schedulers, optimizer)
        self.accum_grad = accum_grad

    # The core part of the update routine can be customized by overriding.
    def update_core(self):
        # When we pass one iterator and optimizer to StandardUpdater.__init__,
        # they are automatically named 'main'.
        train_iter = self.get_iterator("main")
        optimizer = self.get_optimizer("main")

        count = 0
        sum_loss = 0
        optimizer.target.cleargrads()  # Clear the parameter gradients
        for _ in range(self.accum_grad):
            # Progress the dataset iterator for sentences at each iteration.
            batch = train_iter.__next__()
            x, t = convert.concat_examples(batch, device=self.device, padding=(0, -1))
            # Concatenate the token IDs to matrices and send them to the device
            # self.converter does this job
            # (it is chainer.dataset.concat_examples by default)
            xp = chainer.backends.cuda.get_array_module(x)
            loss = 0
            state = None
            batch_size, sequence_length = x.shape
            for i in six.moves.range(sequence_length):
                # Compute the loss at this time step and accumulate it
                state, loss_batch = optimizer.target(
                    state, chainer.Variable(x[:, i]), chainer.Variable(t[:, i])
                )
                non_zeros = xp.count_nonzero(x[:, i])
                loss += loss_batch * non_zeros
                count += int(non_zeros)
            # backward
            loss /= batch_size * self.accum_grad  # normalized by batch size
            sum_loss += float(loss.data)
            loss.backward()  # Backprop
            loss.unchain_backward()  # Truncate the graph

        reporter.report({"loss": sum_loss}, optimizer.target)
        reporter.report({"count": count}, optimizer.target)
        # update
        optimizer.update()  # Update the parameters
        self.scheduler.step(self.iteration)


class LMEvaluator(BaseEvaluator):
    """A custom evaluator for a chainer LM

    :param chainer.dataset.Iterator val_iter : The validation iterator
    :param eval_model : The model to evaluate
    :param int device : The device id to use
    """

    def __init__(self, val_iter, eval_model, device):
        super(LMEvaluator, self).__init__(val_iter, eval_model, device=device)

    def evaluate(self):
        val_iter = self.get_iterator("main")
        target = self.get_target("main")
        loss = 0
        count = 0
        for batch in copy.copy(val_iter):
            x, t = convert.concat_examples(batch, device=self.device, padding=(0, -1))
            xp = chainer.backends.cuda.get_array_module(x)
            state = None
            for i in six.moves.range(len(x[0])):
                state, loss_batch = target(state, x[:, i], t[:, i])
                non_zeros = xp.count_nonzero(x[:, i])
                loss += loss_batch.data * non_zeros
                count += int(non_zeros)
        # report validation loss
        observation = {}
        with reporter.report_scope(observation):
            reporter.report({"loss": float(loss / count)}, target)
        return observation


def train(args):
    """Train with the given args

    :param Namespace args: The program arguments
    """
    # TODO(karita): support this
    if args.model_module != "default":
        raise NotImplementedError("chainer backend does not support --model-module")

    # display chainer version
    logging.info("chainer version = " + chainer.__version__)

    set_deterministic_chainer(args)

    # check cuda and cudnn availability
    if not chainer.cuda.available:
        logging.warning("cuda is not available")
    if not chainer.cuda.cudnn_enabled:
        logging.warning("cudnn is not available")

    # get special label ids
    unk = args.char_list_dict["<unk>"]
    eos = args.char_list_dict["<eos>"]
    # read tokens as a sequence of sentences
    train = read_tokens(args.train_label, args.char_list_dict)
    val = read_tokens(args.valid_label, args.char_list_dict)
    # count tokens
    n_train_tokens, n_train_oovs = count_tokens(train, unk)
    n_val_tokens, n_val_oovs = count_tokens(val, unk)
    logging.info("#vocab = " + str(args.n_vocab))
    logging.info("#sentences in the training data = " + str(len(train)))
    logging.info("#tokens in the training data = " + str(n_train_tokens))
    logging.info(
        "oov rate in the training data = %.2f %%"
        % (n_train_oovs / n_train_tokens * 100)
    )
    logging.info("#sentences in the validation data = " + str(len(val)))
    logging.info("#tokens in the validation data = " + str(n_val_tokens))
    logging.info(
        "oov rate in the validation data = %.2f %%" % (n_val_oovs / n_val_tokens * 100)
    )

    use_sortagrad = args.sortagrad == -1 or args.sortagrad > 0

    # Create the dataset iterators
    train_iter = ParallelSentenceIterator(
        train,
        args.batchsize,
        max_length=args.maxlen,
        sos=eos,
        eos=eos,
        shuffle=not use_sortagrad,
    )
    val_iter = ParallelSentenceIterator(
        val, args.batchsize, max_length=args.maxlen, sos=eos, eos=eos, repeat=False
    )
    epoch_iters = int(len(train_iter.batch_indices) / args.accum_grad)
    logging.info("#iterations per epoch = %d" % epoch_iters)
    logging.info("#total iterations = " + str(args.epoch * epoch_iters))
    # Prepare an RNNLM model
    rnn = RNNLM(args.n_vocab, args.layer, args.unit, args.type)
    model = ClassifierWithState(rnn)
    if args.ngpu > 1:
        logging.warning("currently, multi-gpu is not supported. use single gpu.")
    if args.ngpu > 0:
        # Make the specified GPU current
        gpu_id = 0
        chainer.cuda.get_device_from_id(gpu_id).use()
        model.to_gpu()
    else:
        gpu_id = -1

    # Save model conf to json
    model_conf = args.outdir + "/model.json"
    with open(model_conf, "wb") as f:
        logging.info("writing a model config file to " + model_conf)
        f.write(
            json.dumps(vars(args), indent=4, ensure_ascii=False, sort_keys=True).encode(
                "utf_8"
            )
        )

    # Set up an optimizer
    opt_class = dynamic_import_optimizer(args.opt, args.backend)
    optimizer = opt_class.from_args(model, args)
    if args.schedulers is None:
        schedulers = []
    else:
        schedulers = [dynamic_import_scheduler(v)(k, args) for k, v in args.schedulers]

    optimizer.setup(model)
    optimizer.add_hook(chainer.optimizer.GradientClipping(args.gradclip))

    updater = BPTTUpdater(train_iter, optimizer, schedulers, gpu_id, args.accum_grad)
    trainer = training.Trainer(updater, (args.epoch, "epoch"), out=args.outdir)
    trainer.extend(LMEvaluator(val_iter, model, device=gpu_id))
    trainer.extend(
        extensions.LogReport(
            postprocess=compute_perplexity,
            trigger=(args.report_interval_iters, "iteration"),
        )
    )
    trainer.extend(
        extensions.PrintReport(
            ["epoch", "iteration", "perplexity", "val_perplexity", "elapsed_time"]
        ),
        trigger=(args.report_interval_iters, "iteration"),
    )
    trainer.extend(extensions.ProgressBar(update_interval=args.report_interval_iters))
    trainer.extend(extensions.snapshot(filename="snapshot.ep.{.updater.epoch}"))
    trainer.extend(extensions.snapshot_object(model, "rnnlm.model.{.updater.epoch}"))
    # MEMO(Hori): wants to use MinValueTrigger, but it seems to fail in resuming
    trainer.extend(MakeSymlinkToBestModel("validation/main/loss", "rnnlm.model"))

    if use_sortagrad:
        trainer.extend(
            ShufflingEnabler([train_iter]),
            trigger=(args.sortagrad if args.sortagrad != -1 else args.epoch, "epoch"),
        )

    if args.resume:
        logging.info("resumed from %s" % args.resume)
        chainer.serializers.load_npz(args.resume, trainer)

    set_early_stop(trainer, args, is_lm=True)
    if args.tensorboard_dir is not None and args.tensorboard_dir != "":
        writer = SummaryWriter(args.tensorboard_dir)
        trainer.extend(
            TensorboardLogger(writer), trigger=(args.report_interval_iters, "iteration")
        )

    trainer.run()
    check_early_stop(trainer, args.epoch)

    # compute perplexity for test set
    if args.test_label:
        logging.info("test the best model")
        chainer.serializers.load_npz(args.outdir + "/rnnlm.model.best", model)
        test = read_tokens(args.test_label, args.char_list_dict)
        n_test_tokens, n_test_oovs = count_tokens(test, unk)
        logging.info("#sentences in the test data = " + str(len(test)))
        logging.info("#tokens in the test data = " + str(n_test_tokens))
        logging.info(
            "oov rate in the test data = %.2f %%" % (n_test_oovs / n_test_tokens * 100)
        )
        test_iter = ParallelSentenceIterator(
            test, args.batchsize, max_length=args.maxlen, sos=eos, eos=eos, repeat=False
        )
        evaluator = LMEvaluator(test_iter, model, device=gpu_id)
        with chainer.using_config("train", False):
            result = evaluator()
        logging.info("test perplexity: " + str(np.exp(float(result["main/loss"]))))