rwightman HF Staff commited on
Commit
147fbb0
·
verified ·
1 Parent(s): f75951b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +120 -0
app.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import timm
3
+ import torch
4
+ from PIL import Image
5
+ import requests
6
+ from io import BytesIO
7
+ import numpy as np
8
+ from pytorch_grad_cam import GradCAM, HiResCAM, ScoreCAM, GradCAMPlusPlus, AblationCAM, XGradCAM, EigenCAM, FullGrad
9
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget, get_target_layer
10
+ from pytorch_grad_cam.utils.image import show_cam_on_image
11
+ from timm.data import create_transform
12
+
13
+ # List of available timm models
14
+ MODELS = timm.list_models()
15
+
16
+ # List of available GradCAM methods
17
+ CAM_METHODS = {
18
+ "GradCAM": GradCAM,
19
+ "HiResCAM": HiResCAM,
20
+ "ScoreCAM": ScoreCAM,
21
+ "GradCAM++": GradCAMPlusPlus,
22
+ "AblationCAM": AblationCAM,
23
+ "XGradCAM": XGradCAM,
24
+ "EigenCAM": EigenCAM,
25
+ "FullGrad": FullGrad
26
+ }
27
+
28
+ def load_model(model_name):
29
+ model = timm.create_model(model_name, pretrained=True)
30
+ model.eval()
31
+ return model
32
+
33
+ def process_image(image_path, model):
34
+ if image_path.startswith('http'):
35
+ response = requests.get(image_path)
36
+ image = Image.open(BytesIO(response.content))
37
+ else:
38
+ image = Image.open(image_path)
39
+
40
+ config = model.pretrained_cfg
41
+ transform = create_transform(
42
+ input_size=config['input_size'],
43
+ crop_pct=config['crop_pct'],
44
+ mean=config['mean'],
45
+ std=config['std'],
46
+ interpolation=config['interpolation'],
47
+ is_training=False
48
+ )
49
+
50
+ tensor = transform(image).unsqueeze(0)
51
+ return tensor
52
+
53
+ def get_cam_image(model, image, target_layer, cam_method):
54
+ cam = CAM_METHODS[cam_method](model=model, target_layers=[target_layer], use_cuda=torch.cuda.is_available())
55
+ grayscale_cam = cam(input_tensor=image)
56
+
57
+ config = model.pretrained_cfg
58
+ mean = torch.tensor(config['mean']).view(3, 1, 1)
59
+ std = torch.tensor(config['std']).view(3, 1, 1)
60
+ rgb_img = (image.squeeze(0) * std + mean).permute(1, 2, 0).cpu().numpy()
61
+ rgb_img = np.clip(rgb_img, 0, 1)
62
+
63
+ cam_image = show_cam_on_image(rgb_img, grayscale_cam[0, :], use_rgb=True)
64
+ return Image.fromarray(cam_image)
65
+
66
+ def get_feature_info(model):
67
+ if hasattr(model, 'feature_info'):
68
+ return [f['module'] for f in model.feature_info]
69
+ else:
70
+ return []
71
+
72
+ def explain_image(model_name, image_path, cam_method, feature_module):
73
+ model = load_model(model_name)
74
+ image = process_image(image_path, model)
75
+
76
+ if feature_module:
77
+ target_layer = get_target_layer(model, feature_module)
78
+ print(f"Using feature module: {feature_module}")
79
+ else:
80
+ # Fallback to the last feature module or last convolutional layer
81
+ feature_info = get_feature_info(model)
82
+ if feature_info:
83
+ target_layer = get_target_layer(model, feature_info[-1])
84
+ print(f"Using last feature module: {feature_info[-1]}")
85
+ else:
86
+ # Fallback to finding last convolutional layer
87
+ for name, module in reversed(list(model.named_modules())):
88
+ if isinstance(module, torch.nn.Conv2d):
89
+ target_layer = module
90
+ print(f"Fallback: Using last convolutional layer: {name}")
91
+ break
92
+
93
+ if target_layer is None:
94
+ raise ValueError("Could not find a suitable target layer.")
95
+
96
+ cam_image = get_cam_image(model, image, target_layer, cam_method)
97
+ return cam_image
98
+
99
+ def update_feature_modules(model_name):
100
+ model = load_model(model_name)
101
+ feature_modules = get_feature_info(model)
102
+ return gr.Dropdown.update(choices=feature_modules, value=feature_modules[-1] if feature_modules else None)
103
+
104
+ iface = gr.Interface(
105
+ fn=explain_image,
106
+ inputs=[
107
+ gr.Dropdown(choices=MODELS, label="Select Model"),
108
+ gr.Image(type="filepath", label="Upload Image"),
109
+ gr.Dropdown(choices=list(CAM_METHODS.keys()), label="Select CAM Method"),
110
+ gr.Dropdown(label="Select Feature Module (optional)")
111
+ ],
112
+ outputs=gr.Image(type="pil", label="Explained Image"),
113
+ title="Explainable AI with timm models",
114
+ description="Upload an image, select a model, CAM method, and optionally a specific feature module to visualize the explanation.",
115
+ allow_flagging="never"
116
+ )
117
+
118
+ iface.load(update_feature_modules, inputs=[iface.inputs[0]], outputs=[iface.inputs[3]])
119
+
120
+ iface.launch()