cot or not
Browse files- app/utils.py +93 -24
app/utils.py
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
import json
|
2 |
import re
|
|
|
|
|
3 |
from typing import Generator
|
4 |
from textwrap import dedent
|
5 |
from litellm.types.utils import ModelResponse
|
6 |
from pydantic import ValidationError
|
7 |
from core.llms.base_llm import BaseLLM
|
8 |
-
from core.
|
9 |
-
from core.
|
|
|
10 |
import os
|
11 |
import time
|
12 |
from core.utils import parse_with_fallback
|
@@ -16,40 +19,106 @@ from core.llms.litellm_llm import LLM
|
|
16 |
from core.llms.utils import user_message_with_images
|
17 |
from PIL import Image
|
18 |
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
|
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
-
def
|
24 |
-
thoughts = []
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
|
54 |
def response_parser(response:str) -> ThoughtSteps:
|
55 |
if isinstance(response, str):
|
|
|
1 |
import json
|
2 |
import re
|
3 |
+
import sys
|
4 |
+
from turtle import color
|
5 |
from typing import Generator
|
6 |
from textwrap import dedent
|
7 |
from litellm.types.utils import ModelResponse
|
8 |
from pydantic import ValidationError
|
9 |
from core.llms.base_llm import BaseLLM
|
10 |
+
from core.prompts import cot
|
11 |
+
from core.types import ThoughtSteps, ThoughtStepsDisplay
|
12 |
+
from core.prompts import REVIEW_PROMPT, SYSTEM_PROMPT ,FINAL_ANSWER_PROMPT, HELPFUL_ASSISTANT_PROMPT
|
13 |
import os
|
14 |
import time
|
15 |
from core.utils import parse_with_fallback
|
|
|
19 |
from core.llms.utils import user_message_with_images
|
20 |
from PIL import Image
|
21 |
from streamlit.runtime.uploaded_file_manager import UploadedFile
|
22 |
+
from core.prompts.decision_prompt import COT_OR_DA_PROMPT, COTorDAPromptOutput, Decision
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
+
def cot_or_da_func(problem: str, llm: BaseLLM = None, **kwargs) -> COTorDAPromptOutput:
|
|
|
28 |
|
29 |
+
cot_decision_message = [
|
30 |
+
{"role": "system", "content": COT_OR_DA_PROMPT},
|
31 |
+
{"role": "user", "content": problem}]
|
32 |
+
|
33 |
+
raw_decision_response = llm.chat(messages=cot_decision_message, **kwargs)
|
34 |
+
print(colored(f"Decision Response: {raw_decision_response.choices[0].message.content}", 'blue', 'on_black'))
|
35 |
+
decision_response = raw_decision_response.choices[0].message.content
|
36 |
+
|
37 |
+
try:
|
38 |
+
decision = json.loads(decision_response)
|
39 |
+
cot_or_da = COTorDAPromptOutput(**decision)
|
40 |
+
except (json.JSONDecodeError, ValidationError, KeyError):
|
41 |
+
print(colored("Error parsing LLM's CoT decision. Defaulting to Chain of thought.", 'red'))
|
42 |
+
cot_or_da = COTorDAPromptOutput(problem=problem, decision="Chain-of-Thought", reasoning="Defaulting to Chain-of-Thought")
|
43 |
+
|
44 |
+
return cot_or_da
|
45 |
|
46 |
+
|
47 |
+
def get_system_prompt(decision: Decision) -> str:
|
48 |
+
if decision == Decision.CHAIN_OF_THOUGHT:
|
49 |
+
return cot.SYSTEM_PROMPT
|
50 |
+
elif decision == Decision.DIRECT_ANSWER:
|
51 |
+
return HELPFUL_ASSISTANT_PROMPT
|
52 |
+
else:
|
53 |
+
raise ValueError(f"Invalid decision: {decision}")
|
54 |
+
|
55 |
+
def set_system_message(messages: list[dict], cot_or_da: COTorDAPromptOutput) -> list[dict]:
|
56 |
+
system_prompt = get_system_prompt(cot_or_da.decision)
|
57 |
+
#check if any system message already exists
|
58 |
+
if any(message['role'] == 'system' for message in messages):
|
59 |
+
for i, message in enumerate(messages):
|
60 |
+
if message['role'] == 'system':
|
61 |
+
messages[i]['content'] = system_prompt
|
62 |
+
else:
|
63 |
+
# add a dict at the beginning of the list
|
64 |
+
messages.insert(0, {"role": "system", "content": system_prompt})
|
65 |
+
return messages
|
66 |
+
|
67 |
+
|
68 |
+
def generate_answer(messages: list[dict], max_steps: int = 20, llm: BaseLLM = None, sleeptime: float = 0.0, force_max_steps: bool = False, **kwargs) -> Generator[ThoughtStepsDisplay, None, None]:
|
69 |
+
|
70 |
+
user_message = messages[-1]['content']
|
71 |
+
cot_or_da = cot_or_da_func(user_message, llm=llm, **kwargs)
|
72 |
+
print(colored(f"LLM Decision: {cot_or_da.decision} - Justification: {cot_or_da.reasoning}", 'magenta'))
|
73 |
+
|
74 |
+
MESSAGES = set_system_message(messages, cot_or_da)
|
75 |
+
|
76 |
+
|
77 |
+
if cot_or_da.decision == Decision.CHAIN_OF_THOUGHT:
|
78 |
|
79 |
+
print(colored(f" {MESSAGES}", 'red'))
|
80 |
+
for i in range(max_steps):
|
81 |
+
print(i)
|
82 |
+
raw_response = llm.chat(messages=MESSAGES, **kwargs)
|
83 |
+
print(colored(f"{i+1} - {raw_response.choices[0].message.content}", 'blue', 'on_black'))
|
84 |
+
response = raw_response.choices[0].message.content
|
85 |
+
thought = response_parser(response)
|
86 |
+
|
87 |
+
print(colored(f"{i+1} - {response}", 'yellow'))
|
88 |
+
|
89 |
+
MESSAGES.append({"role": "assistant", "content": thought.model_dump_json()})
|
90 |
+
|
91 |
+
yield thought.to_thought_steps_display()
|
92 |
+
|
93 |
+
if thought.is_final_answer and not thought.next_step and not force_max_steps:
|
94 |
+
break
|
95 |
+
|
96 |
+
MESSAGES.append({"role": "user", "content": cot.REVIEW_PROMPT})
|
97 |
+
|
98 |
+
time.sleep(sleeptime)
|
99 |
+
|
100 |
+
# Get the final answer after all thoughts are processed
|
101 |
+
MESSAGES += [{"role": "user", "content": cot.FINAL_ANSWER_PROMPT}]
|
102 |
|
103 |
+
raw_final_answers = llm.chat(messages=MESSAGES, **kwargs)
|
104 |
+
final_answer = raw_final_answers.choices[0].message.content
|
105 |
|
106 |
+
print(colored(f"final answer - {final_answer}", 'green'))
|
107 |
|
108 |
+
final_thought = response_parser(final_answer)
|
109 |
+
|
110 |
+
yield final_thought.to_thought_steps_display()
|
111 |
+
|
112 |
+
else:
|
113 |
|
114 |
+
raw_response = llm.chat(messages=MESSAGES, **kwargs) #
|
115 |
+
response = raw_response.choices[0].message.content
|
116 |
+
thought = response_parser(response)
|
117 |
+
|
118 |
+
print(colored(f"Direct Answer - {response}", 'blue'))
|
119 |
|
120 |
+
yield thought.to_thought_steps_display()
|
121 |
+
|
122 |
|
123 |
def response_parser(response:str) -> ThoughtSteps:
|
124 |
if isinstance(response, str):
|