|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import whisper |
|
import librosa |
|
from copy import deepcopy |
|
from tts.utils.text_utils.ph_tone_convert import split_ph_timestamp, split_ph |
|
from tts.utils.audio_utils.align import mel2token_to_dur |
|
|
|
''' Graphme to phoneme function ''' |
|
def g2p(self, text_inp): |
|
|
|
txt_token = self.g2p_tokenizer('<BOT>' + text_inp + '<BOS>')['input_ids'] |
|
input_ids = torch.LongTensor([txt_token+[145+self.speech_start_idx]]).to(self.device) |
|
|
|
|
|
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): |
|
outputs = self.g2p_model.generate(input_ids, max_new_tokens=256, do_sample=True, top_k=1, eos_token_id=800+1+self.speech_start_idx) |
|
|
|
|
|
ph_tokens = outputs[:, len(txt_token):-1]-self.speech_start_idx |
|
ph_pred, tone_pred = split_ph(ph_tokens[0]) |
|
ph_pred, tone_pred = ph_pred[None, :].to(self.device), tone_pred[None, :].to(self.device) |
|
return ph_pred, tone_pred |
|
|
|
''' Get phoneme2mel align of prompt speech ''' |
|
def align(self, wav): |
|
with torch.inference_mode(): |
|
whisper_wav = librosa.resample(wav, orig_sr=self.sr, target_sr=16000) |
|
mel = torch.FloatTensor(whisper.log_mel_spectrogram(whisper_wav).T).to(self.device)[None].transpose(1,2) |
|
prompt_max_frame = mel.size(2) // self.fm * self.fm |
|
mel = mel[:, :, :prompt_max_frame] |
|
token = torch.LongTensor([[798]]).to(self.device) |
|
audio_features = self.aligner_lm.embed_audio(mel) |
|
for i in range(768): |
|
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): |
|
logits = self.aligner_lm.logits(token, audio_features, None) |
|
token_pred = torch.argmax(F.softmax(logits[:, -1], dim=-1), 1)[None] |
|
token = torch.cat([token, token_pred], dim=1) |
|
if token_pred[0] == 799: |
|
break |
|
alignment_tokens = token |
|
|
|
ph_ref, tone_ref, dur_ref, _ = split_ph_timestamp(deepcopy(alignment_tokens)[0, 1:-1]) |
|
ph_ref = torch.Tensor(ph_ref)[None].to(self.device) |
|
tone_ref = torch.Tensor(tone_ref)[None].to(self.device) |
|
if dur_ref.sum() < prompt_max_frame: |
|
dur_ref[-1] += prompt_max_frame - dur_ref.sum() |
|
elif dur_ref.sum() > prompt_max_frame: |
|
len_diff = dur_ref.sum() - prompt_max_frame |
|
while True: |
|
for i in range(len(dur_ref)): |
|
dur_ref[i] -= 1 |
|
len_diff -= 1 |
|
if len_diff == 0: |
|
break |
|
if len_diff == 0: |
|
break |
|
mel2ph_ref = self.length_regulator(dur_ref[None]).to(self.device) |
|
mel2ph_ref = mel2ph_ref[:, :mel2ph_ref.size(1)//self.fm*self.fm] |
|
return ph_ref, tone_ref, mel2ph_ref |
|
|
|
''' Duration Prompting ''' |
|
def make_dur_prompt(self, mel2ph_ref, ph_ref, tone_ref): |
|
dur_tokens_2d_ = mel2token_to_dur(mel2ph_ref, ph_ref.shape[1]).clamp( |
|
max=self.hp_dur_model['dur_code_size'] - 1) + 1 |
|
|
|
ctx_dur_tokens = dur_tokens_2d_.clone().flatten(0, 1).to(self.device) |
|
txt_tokens_flat_ = ph_ref.flatten(0, 1) |
|
ctx_dur_tokens = ctx_dur_tokens[txt_tokens_flat_ > 0][None] |
|
|
|
last_dur_pos_prompt = ctx_dur_tokens.shape[1] |
|
dur_spk_pos_ids_flat = range(0, last_dur_pos_prompt) |
|
dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device) |
|
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): |
|
_, incremental_state_dur_prompt = self.dur_model.infer( |
|
ph_ref, {'tone': tone_ref}, None, None, None, |
|
ctx_vqcodes=ctx_dur_tokens, spk_pos_ids_flat=dur_spk_pos_ids_flat, return_state=True) |
|
return incremental_state_dur_prompt, ctx_dur_tokens |
|
|
|
''' Duration Prediction ''' |
|
def dur_pred(self, ctx_dur_tokens, incremental_state_dur_prompt, ph_pred, tone_pred, seg_i, dur_disturb, dur_alpha, is_first, is_final): |
|
last_dur_token = ctx_dur_tokens[:, -1:] |
|
last_dur_pos_prompt = ctx_dur_tokens.shape[1] |
|
incremental_state_dur = deepcopy(incremental_state_dur_prompt) |
|
txt_len = ph_pred.shape[1] |
|
dur_spk_pos_ids_flat = range(last_dur_pos_prompt, last_dur_pos_prompt + txt_len) |
|
dur_spk_pos_ids_flat = torch.LongTensor([dur_spk_pos_ids_flat]).to(self.device) |
|
last_dur_pos_prompt = last_dur_pos_prompt + txt_len |
|
|
|
with torch.cuda.amp.autocast(dtype=self.precision, enabled=True): |
|
dur_pred = self.dur_model.infer( |
|
ph_pred, {'tone': tone_pred}, None, None, None, |
|
incremental_state=incremental_state_dur, |
|
first_decoder_inp=last_dur_token, |
|
spk_pos_ids_flat=dur_spk_pos_ids_flat, |
|
) |
|
|
|
dur_pred = dur_pred - 1 |
|
dur_pred = dur_pred.clamp(0, self.hp_dur_model['dur_code_size'] - 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for sil_token in [148, 153, 166, 145]: |
|
dur_pred[ph_pred==sil_token].clamp_min(32) |
|
|
|
for sil_token in [163, 165]: |
|
dur_pred[ph_pred==sil_token].clamp_min(16) |
|
if not is_final: |
|
|
|
dur_pred[:, -1] = dur_pred[:, -1] + 32 |
|
else: |
|
dur_pred[:, -1] = dur_pred[:, -1].clamp(64, 128) |
|
|
|
''' DiT target speech generation ''' |
|
dur_disturb_choice = (torch.rand_like(dur_pred.float()) > 0.5).float() |
|
dur_disturb_r = 1 + torch.rand_like(dur_pred.float()) * dur_disturb |
|
dur_pred = dur_pred * dur_disturb_r * dur_disturb_choice + \ |
|
dur_pred / dur_disturb_r * (1 - dur_disturb_choice) |
|
dur_pred = torch.round(dur_pred * dur_alpha).clamp(0, 127) |
|
if is_first: |
|
dur_pred[:, 0] = 8 |
|
|
|
dur_sum = dur_pred.sum() |
|
npad = self.fm - dur_sum % self.fm |
|
if npad < self.fm: |
|
dur_pred[:, -1] += npad |
|
mel2ph_pred = self.length_regulator(dur_pred).to(self.device) |
|
return mel2ph_pred |
|
|
|
def prepare_inputs_for_dit(self, mel2ph_ref, mel2ph_pred, ph_ref, tone_ref, ph_pred, tone_pred, vae_latent): |
|
|
|
mel2ph_pred = torch.cat((mel2ph_ref, mel2ph_pred+ph_ref.size(1)), dim=1) |
|
mel2ph_pred = mel2ph_pred[:, :mel2ph_pred.size(1)//self.fm*self.fm].repeat(3, 1) |
|
|
|
ph_pred = torch.cat((ph_ref, ph_pred), dim=1) |
|
tone_pred = torch.cat((tone_ref, tone_pred), dim=1) |
|
|
|
en_tone_idx = ~((tone_pred == 4) | ( (11 <= tone_pred) & (tone_pred <= 15)) | (tone_pred == 0)) |
|
tone_pred[en_tone_idx] = 3 |
|
|
|
|
|
ph_seq = torch.cat([ph_pred, ph_pred, torch.full(ph_pred.size(), self.cfg_mask_token_phone, device=self.device)], 0) |
|
tone_seq = torch.cat([tone_pred, tone_pred, torch.full(tone_pred.size(), self.cfg_mask_token_tone, device=self.device)], 0) |
|
target_size = mel2ph_pred.size(1)//self.vae_stride |
|
vae_latent_ = vae_latent.repeat(3, 1, 1) |
|
ctx_mask = torch.ones_like(vae_latent_[:, :, 0:1]) |
|
vae_latent_ = F.pad(vae_latent_, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0) |
|
vae_latent_[1:] = 0.0 |
|
ctx_mask = F.pad(ctx_mask, (0, 0, 0, target_size - vae_latent.size(1)), mode='constant', value=0) |
|
|
|
return { |
|
'phone': ph_seq, |
|
'tone': tone_seq, |
|
"lat_ctx": vae_latent_ * ctx_mask, |
|
"ctx_mask": ctx_mask, |
|
"dur": mel2ph_pred, |
|
} |
|
|