File size: 12,725 Bytes
d85221f
64f8498
 
238b905
64f8498
 
 
 
 
 
238b905
 
 
 
 
 
 
 
 
64f8498
 
 
 
 
 
 
 
238b905
64f8498
 
d85221f
 
 
 
238b905
 
 
 
 
 
64f8498
238b905
64f8498
 
 
 
 
 
 
 
238b905
 
 
 
 
64f8498
238b905
 
 
 
 
64f8498
 
 
 
 
 
 
238b905
 
 
 
 
 
 
 
 
 
 
 
64f8498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238b905
64f8498
 
 
238b905
64f8498
238b905
 
 
 
 
 
 
 
64f8498
238b905
 
 
 
 
64f8498
 
 
238b905
64f8498
238b905
64f8498
238b905
64f8498
 
 
 
238b905
64f8498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238b905
64f8498
 
 
 
 
 
 
 
 
 
 
 
238b905
64f8498
 
 
 
 
 
 
238b905
64f8498
 
 
 
 
 
 
 
 
 
238b905
64f8498
 
 
 
 
 
 
238b905
64f8498
238b905
 
 
d85221f
238b905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f8498
238b905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64f8498
 
238b905
64f8498
238b905
 
64f8498
 
238b905
64f8498
 
 
 
 
238b905
64f8498
 
 
238b905
 
 
 
 
64f8498
 
 
 
238b905
 
 
 
 
 
 
 
 
 
64f8498
 
238b905
64f8498
238b905
 
64f8498
238b905
64f8498
238b905
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import sys
import numpy as np
import soundfile as sf
from typing import List, Tuple, Optional, Dict, Union
import webrtcvad
from dataclasses import dataclass, asdict
from scipy import signal
import json
import os
from datetime import datetime
import logging

# 配置日志
logger = logging.getLogger("vad")
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)  # 默认INFO级别

@dataclass
class AudioSegment:
    start_time: float  # 开始时间(秒)
    end_time: float    # 结束时间(秒)
    audio_data: np.ndarray  # 音频数据
    is_speech: bool    # 是否包含语音

class AudioVad:
    def __init__(self, 
                 sample_rate: int = 16000,
                 frame_duration_ms: int = 20,
                 vad_level: int = 0,          # 降低VAD灵敏度
                 min_silence_duration: float = 0.3,  # 静音持续时间
                 min_speech_duration: float = 0.3,   # 增加最小语音持续时间,确保完整句子
                 amplitude_threshold: float = 0.0015,  # 振幅阈值
                 save_audio: bool = False,    # 是否保存分段音频
                 save_json: bool = False,     # 是否保存JSON元数据
                 output_dir: str = "dataset/audio/segments",  # 音频输出目录
                 json_dir: str = "dataset/audio/metadata",    # JSON输出目录
                 log_level: Union[int, str] = logging.INFO):  # 日志级别
        """
        初始化音频VAD处理器
        
        Args:
            sample_rate: 采样率
            frame_duration_ms: VAD帧长度(毫秒)
            vad_level: VAD灵敏度 (0-3)
            min_silence_duration: 最小静音持续时间(秒)
            min_speech_duration: 最小语音片段长度(秒)
            amplitude_threshold: 振幅阈值
            save_audio: 是否保存分段音频文件
            save_json: 是否保存JSON元数据
            output_dir: 音频输出目录
            json_dir: JSON元数据输出目录
            log_level: 日志级别
        """
        # 设置日志级别
        if isinstance(log_level, str):
            log_level = getattr(logging, log_level.upper())
        logger.setLevel(log_level)
        
        self.sample_rate = sample_rate
        self.frame_duration_ms = frame_duration_ms
        self.frame_size = int(sample_rate * frame_duration_ms / 1000)
        self.vad = webrtcvad.Vad(vad_level)
        self.min_silence_frames = int(min_silence_duration * 1000 / frame_duration_ms)
        self.min_speech_frames = int(min_speech_duration * 1000 / frame_duration_ms)
        self.amplitude_threshold = amplitude_threshold
        
        # 保存配置
        self.save_audio = save_audio
        self.save_json = save_json
        self.output_dir = output_dir
        self.json_dir = json_dir
        
        # 如果需要保存文件,确保目录存在
        if self.save_audio:
            os.makedirs(self.output_dir, exist_ok=True)
        if self.save_json:
            os.makedirs(self.json_dir, exist_ok=True)

    def _is_speech_frame(self, frame: np.ndarray) -> bool:
        """
        判断一帧是否包含语音
        """
        # 确保帧长度正确
        if len(frame) != self.frame_size:
            return False
            
        # 将float32转换为int16,并确保值在范围内
        frame_int16 = np.clip(frame * 32768, -32768, 32767).astype(np.int16)
        
        # 使用振幅判断
        frame_amplitude = np.max(np.abs(frame))
        if frame_amplitude < self.amplitude_threshold:
            return False
            
        # 使用VAD判断
        try:
            return self.vad.is_speech(frame_int16.tobytes(), self.sample_rate)
        except Exception as e:
            logger.error(f"VAD处理出错: {e}")
            # 如果VAD失败,仅使用振幅判断
            return frame_amplitude >= self.amplitude_threshold * 2

    def process_audio_data(self, audio_data: np.ndarray, sample_rate: int = None) -> List[AudioSegment]:
        """
        处理音频数据,返回切割后的片段列表
        
        Args:
            audio_data: 音频数据numpy数组
            sample_rate: 音频采样率,如果与初始化不同则会重采样
            
        Returns:
            AudioSegment列表
        """
        logger.debug(f"处理音频数据,形状: {audio_data.shape}")
        
        # 如果提供了采样率且与目标不同,进行重采样
        if sample_rate is not None and sample_rate != self.sample_rate:
            logger.debug(f"正在重采样音频从 {sample_rate}Hz 到 {self.sample_rate}Hz")
            # 使用scipy的resample函数进行重采样
            num_samples = int(len(audio_data) * self.sample_rate / sample_rate)
            audio_data = signal.resample(audio_data, num_samples)
            logger.debug(f"重采样后音频长度: {len(audio_data)} 采样点")

        # 如果是多声道,转换为单声道
        if len(audio_data.shape) > 1:
            logger.debug("检测到多声道音频,正在转换为单声道")
            audio_data = audio_data.mean(axis=1)  # 转换为单声道

        # 初始化结果列表
        segments: List[AudioSegment] = []
        logger.debug(f"开始处理音频,总长度: {len(audio_data)} 采样点 ({len(audio_data)/self.sample_rate:.2f}秒)")
        
        # 当前处理的状态
        current_segment_start = 0
        silence_frame_count = 0
        is_in_speech = False
        
        # 按帧处理音频
        total_frames = len(audio_data) // self.frame_size
        speech_frames = 0
        for i in range(0, len(audio_data), self.frame_size):
            # 确保帧长度正确
            frame = audio_data[i:i + self.frame_size]
            if len(frame) < self.frame_size:
                # 对于最后一个不完整帧,补零处理
                frame = np.pad(frame, (0, self.frame_size - len(frame)), 'constant')
                
            is_speech = self._is_speech_frame(frame)
            if is_speech:
                speech_frames += 1
            
            if is_speech and not is_in_speech:
                # 开始新的语音段
                current_segment_start = i
                is_in_speech = True
                silence_frame_count = 0
                logger.debug(f"检测到语音开始,位置: {i/self.sample_rate:.2f}秒")
            elif not is_speech and is_in_speech:
                silence_frame_count += 1
                
                # 如果静音持续足够长,结束当前语音段
                if silence_frame_count >= self.min_silence_frames:
                    segment_end = i - (silence_frame_count * self.frame_size)
                    duration_frames = (segment_end - current_segment_start) // self.frame_size
                    
                    # 只保存超过最小长度的片段
                    if duration_frames >= self.min_speech_frames:
                        start_time = current_segment_start / self.sample_rate
                        end_time = segment_end / self.sample_rate
                        logger.debug(f"保存语音片段: {start_time:.2f}s -> {end_time:.2f}s (持续时间: {end_time-start_time:.2f}s)")
                        segments.append(AudioSegment(
                            start_time=start_time,
                            end_time=end_time,
                            audio_data=audio_data[current_segment_start:segment_end],
                            is_speech=True
                        ))
                    else:
                        logger.debug(f"丢弃过短的语音片段: {duration_frames * self.frame_duration_ms / 1000:.2f}s")
                    
                    is_in_speech = False
                    
        # 处理最后一个语音段
        if is_in_speech:
            segment_end = len(audio_data)
            duration_frames = (segment_end - current_segment_start) // self.frame_size
            if duration_frames >= self.min_speech_frames:
                start_time = current_segment_start / self.sample_rate
                end_time = segment_end / self.sample_rate
                logger.debug(f"保存最后的语音片段: {start_time:.2f}s -> {end_time:.2f}s (持续时间: {end_time-start_time:.2f}s)")
                segments.append(AudioSegment(
                    start_time=start_time,
                    end_time=end_time,
                    audio_data=audio_data[current_segment_start:segment_end],
                    is_speech=True
                ))
            else:
                logger.debug(f"丢弃过短的最后语音片段: {duration_frames * self.frame_duration_ms / 1000:.2f}s")

        logger.info(f"音频处理完成: 总帧数: {total_frames}, 语音帧数: {speech_frames}, 检测到的语音片段数: {len(segments)}")
        
        return segments

    def process_audio_file(self, audio_path: str) -> List[AudioSegment]:
        """
        处理音频文件,返回切割后的片段列表
        
        Args:
            audio_path: 音频文件路径
            
        Returns:
            AudioSegment列表
        """
        # 读取音频文件
        logger.info(f"正在读取音频文件: {audio_path}")
        audio_data, sample_rate = sf.read(audio_path)
        logger.debug(f"音频采样率: {sample_rate}Hz, 形状: {audio_data.shape}")

        # 处理音频数据
        segments = self.process_audio_data(audio_data, sample_rate)
        
        # 如果需要保存音频片段
        if self.save_audio and segments:
            base_name = os.path.splitext(os.path.basename(audio_path))[0]
            for i, segment in enumerate(segments):
                output_path = os.path.join(self.output_dir, f"{base_name}_segment_{i+1}.wav")
                self.save_segment(segment, output_path)
                logger.debug(f"保存音频片段到: {output_path}")
        
        # 如果需要保存JSON元数据
        if self.save_json and segments:
            self.save_segments_metadata(segments, audio_path)
        
        return segments

    def save_segment(self, segment: AudioSegment, output_path: str):
        """
        保存音频片段到文件
        
        Args:
            segment: 音频片段
            output_path: 输出文件路径
        """
        sf.write(output_path, segment.audio_data, self.sample_rate)

    def save_segments_metadata(self, segments: List[AudioSegment], audio_path: str):
        """
        保存片段元数据到JSON文件
        
        Args:
            segments: 音频片段列表
            audio_path: 原始音频文件路径
        """
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        base_name = os.path.splitext(os.path.basename(audio_path))[0]
        
        # 准备保存的数据
        metadata = {
            "audio_file": audio_path,
            "timestamp": timestamp,
            "total_segments": len(segments),
            "segments": [
                {
                    "index": i,
                    "start_time": seg.start_time,
                    "end_time": seg.end_time,
                    "duration": seg.end_time - seg.start_time,
                    "is_speech": seg.is_speech
                }
                for i, seg in enumerate(segments)
            ]
        }
        
        # 保存JSON文件
        json_path = os.path.join(self.json_dir, f"{base_name}_segments_{timestamp}.json")
        with open(json_path, 'w', encoding='utf-8') as f:
            json.dump(metadata, f, ensure_ascii=False, indent=2)
        logger.info(f"保存片段元数据到: {json_path}")


if __name__ == "__main__":
    # 测试代码
    # 设置日志级别为DEBUG以查看详细信息
    logger.setLevel(logging.DEBUG)
    
    # 创建VAD处理器,配置为保存音频和JSON
    vad = AudioVad(
        save_audio=True,
        save_json=True,
        output_dir="dataset/audio/segments",
        json_dir="dataset/audio/metadata"
    )
    
    # 示例:处理一个音频文件
    audio_path = "dataset/audio/test1.wav"  # 替换为实际的音频文件路径
    try:
        segments = vad.process_audio_file(audio_path)
        logger.info(f"检测到 {len(segments)} 个语音片段:")
        for i, segment in enumerate(segments):
            logger.info(f"片段 {i+1}: {segment.start_time:.2f}s -> {segment.end_time:.2f}s")
    except Exception as e:
        logger.error(f"处理音频时出错: {e}")