Spaces:
Sleeping
Sleeping
#https://huggingface.co/spaces/vonliechti/SQuAD_Agent_Experiment/blob/main/app.py | |
import gradio as gr | |
from gradio import ChatMessage | |
from utils import stream_from_transformers_agent | |
from gradio.context import Context | |
from gradio import Request | |
import pickle | |
import os | |
from dotenv import load_dotenv | |
from agent import get_agent, DEFAULT_TASK_SOLVING_TOOLBOX | |
from transformers.agents import ( | |
DuckDuckGoSearchTool, | |
ImageQuestionAnsweringTool, | |
VisitWebpageTool, | |
) | |
from tools.text_to_image import TextToImageTool | |
from PIL import Image | |
from transformers import load_tool | |
from prompts import ( | |
DEFAULT_SQUAD_REACT_CODE_SYSTEM_PROMPT, | |
FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT, | |
) | |
from pygments.formatters import HtmlFormatter | |
load_dotenv() | |
SESSION_PERSISTENCE_ENABLED = os.getenv("SESSION_PERSISTENCE_ENABLED", False) | |
sessions_path = "sessions.pkl" | |
sessions = ( | |
pickle.load(open(sessions_path, "rb")) | |
if SESSION_PERSISTENCE_ENABLED and os.path.exists(sessions_path) | |
else {} | |
) | |
# If currently hosted on HuggingFace Spaces, use the default model, otherwise use the local model | |
model_name = ( | |
"meta-llama/Meta-Llama-3.1-8B-Instruct" | |
if os.getenv("SPACE_ID") is not None | |
else "http://localhost:1234/v1" | |
) | |
""" | |
The ImageQuestionAnsweringTool from Transformers Agents 2.0 has a bug where | |
it said it accepts the path to an image, but it does not. | |
This class uses the adapter pattern to fix the issue, in a way that may be | |
compatible with future versions of the tool even if the bug is fixed. | |
""" | |
class FixImageQuestionAnsweringTool(ImageQuestionAnsweringTool): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def encode(self, image: "Image | str", question: str): | |
if isinstance(image, str): | |
image = Image.open(image) | |
return super().encode(image, question) | |
""" | |
The app version of the agent has access to additional tools that are not available | |
during benchmarking. We chose this approach to focus benchmarking on the agent's | |
ability to solve questions about the SQuAD dataset, without the help of general | |
knowledge available on the web. For the purposes of the project, the demo | |
app has access to additional tools to provide a more interactive and engaging experience. | |
""" | |
ADDITIONAL_TOOLS = [ | |
DuckDuckGoSearchTool(), | |
VisitWebpageTool(), | |
FixImageQuestionAnsweringTool(), | |
load_tool("speech_to_text"), | |
load_tool("text_to_speech"), | |
load_tool("translation"), | |
TextToImageTool(), | |
] | |
# Add image tools to the default task solving toolbox, for a more visually interactive experience | |
TASK_SOLVING_TOOLBOX = DEFAULT_TASK_SOLVING_TOOLBOX + ADDITIONAL_TOOLS | |
# Using the focused prompt, which was the top-performing prompt during benchmarking | |
system_prompt = FOCUSED_SQUAD_REACT_CODE_SYSTEM_PROMPT | |
agent = get_agent( | |
model_name=model_name, | |
toolbox=TASK_SOLVING_TOOLBOX, | |
system_prompt=system_prompt, | |
use_openai=True, # Use OpenAI instead of a local or HF model as the base LLM engine | |
) | |
def append_example_message(x: gr.SelectData, messages): | |
if x.value["text"] is not None: | |
message = x.value["text"] | |
if "files" in x.value: | |
if isinstance(x.value["files"], list): | |
message = "Here are the files: " | |
for file in x.value["files"]: | |
message += f"{file}, " | |
else: | |
message = x.value["files"] | |
messages.append(ChatMessage(role="user", content=message)) | |
return messages | |
def add_message(message, messages): | |
messages.append(ChatMessage(role="user", content=message)) | |
return messages | |
def interact_with_agent(messages, request: Request): | |
session_hash = request.session_hash | |
prompt = messages[-1]["content"] | |
agent.logs = sessions.get(session_hash + "_logs", []) | |
yield messages, gr.update( | |
value="<center><h1>Thinking...</h1></center>", visible=True | |
) | |
for msg in stream_from_transformers_agent(agent, prompt): | |
if isinstance(msg, ChatMessage): | |
messages.append(msg) | |
yield messages, gr.update(visible=True) | |
else: | |
yield messages, gr.update( | |
value=f"<center><h1>{msg}</h1></center>", visible=True | |
) | |
yield messages, gr.update(value="<center><h1>Idle</h1></center>", visible=False) | |
def persist(component): | |
def resume_session(value, request: Request): | |
session_hash = request.session_hash | |
print(f"Resuming session for {session_hash}") | |
state = sessions.get(session_hash, value) | |
agent.logs = sessions.get(session_hash + "_logs", []) | |
return state | |
def update_session(value, request: Request): | |
session_hash = request.session_hash | |
print(f"Updating persisted session state for {session_hash}") | |
sessions[session_hash] = value | |
sessions[session_hash + "_logs"] = agent.logs | |
if SESSION_PERSISTENCE_ENABLED: | |
pickle.dump(sessions, open(sessions_path, "wb")) | |
Context.root_block.load(resume_session, inputs=[component], outputs=component) | |
component.change(update_session, inputs=[component], outputs=None) | |
return component | |
from gradio.components import ( | |
Component as GradioComponent, | |
) | |
from gradio.components.chatbot import ( | |
Chatbot, | |
FileDataDict, | |
FileData, | |
ComponentMessage, | |
FileMessage, | |
) | |
class CleanChatBot(Chatbot): | |
def __init__(self, **kwargs): | |
super().__init__(**kwargs) | |
def _postprocess_content( | |
self, | |
chat_message: ( | |
str | tuple | list | FileDataDict | FileData | GradioComponent | None | |
), | |
) -> str | FileMessage | ComponentMessage | None: | |
response = super()._postprocess_content(chat_message) | |
print(f"Post processing content: {response}") | |
if isinstance(response, ComponentMessage): | |
print(f"Setting open to False for {response}") | |
response.props["open"] = False | |
return response | |
with gr.Blocks( | |
fill_height=True, | |
css=".gradio-container .message .content {text-align: left;}" | |
+ HtmlFormatter().get_style_defs(".highlight"), | |
) as demo: | |
state = gr.State() | |
inner_monologue_component = gr.Markdown( | |
"""<h2>Inner Monologue</h2>""", visible=False | |
) | |
chatbot = persist( | |
gr.Chatbot( | |
value=[], | |
label="SQuAD Agent", | |
type="messages", | |
avatar_images=( | |
None, | |
"SQuAD.png", | |
), | |
scale=1, | |
autoscroll=True, | |
show_copy_all_button=True, | |
show_copy_button=True, | |
placeholder="""<h1>SQuAD Agent</h1> | |
<h2>I am your friendly guide to the Stanford Question and Answer Dataset (SQuAD).</h2> | |
<h2>You can ask me questions about the dataset. You can also ask me to create images | |
to help illustrate the topics under discussion, or expand the discussion beyond the dataset.</h2> | |
""", | |
examples=[ | |
{ | |
"text": "What is on top of the Notre Dame building?", | |
}, | |
{ | |
"text": "What is the Olympic Torch made of?", | |
}, | |
{ | |
"text": "Draw a picture of whatever is on top of the Notre Dame building.", | |
}, | |
], | |
) | |
) | |
text_input = gr.Textbox(lines=1, label="Chat Message", scale=0) | |
chat_msg = text_input.submit(add_message, [text_input, chatbot], [chatbot]) | |
bot_msg = chat_msg.then( | |
interact_with_agent, [chatbot], [chatbot, inner_monologue_component] | |
) | |
text_input.submit(lambda: "", None, text_input) | |
chatbot.example_select(append_example_message, [chatbot], [chatbot]).then( | |
interact_with_agent, [chatbot], [chatbot, inner_monologue_component] | |
) | |
if __name__ == "__main__": | |
demo.launch() |