thunder-007 commited on
Commit
9d20b7c
·
1 Parent(s): fba53f9

Text Question feature.

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -22,7 +22,7 @@ import torch
22
 
23
  load_dotenv()
24
 
25
- title = 'Detect and Segment Brain Tumors 🧠'
26
  description = '''
27
  '''
28
 
@@ -92,7 +92,7 @@ openai.api_key = os.environ.get("OPENAI_KEY")
92
 
93
 
94
  def make_llm_call(prompt,
95
- context="You are a text generation model DR-Brain Developed by team brute force team consist of HARSHA VARDHAN V , SAWIN KUMAR Y , CHARAN TEJA P, KISHORE S. Your specialized in medical stuff"):
96
  messages = [{"role": "user", "content": prompt}]
97
  if context:
98
  messages.insert(0, {"role": "system", "content": context})
@@ -101,9 +101,11 @@ def make_llm_call(prompt,
101
  return response_message
102
 
103
 
104
- def detector(tumor_file, slice_number, channel, language, audio_question):
105
  llm_answer = "Hi I'm Dr brain please enter a question to answer"
106
- if audio_question:
 
 
107
  sampling_rate, waveform = audio_question
108
  forced_decoder_ids = processor_whisper.get_decoder_prompt_ids(language=language, task="transcribe")
109
  waveform = process_audio(sampling_rate, waveform)
@@ -137,7 +139,8 @@ interface = gr.Interface(fn=detector, inputs=[gr.File(label="Tumor File"),
137
  gr.Slider(0, 200, 50, step=1, label="Slice Number"),
138
  gr.Radio((0, 1, 2), label="Channel"),
139
  gr.Radio(("english", "japanese", "german", "spanish"), label="Language"),
140
- gr.Audio(info="Ask our medical specialist", source="microphone"), ],
 
141
  outputs=[gr.Image(label='channel', shape=(1, 1)),
142
  gr.Image(label='Segmented Tumor', shape=(1, 1)),
143
  gr.Textbox(label="Dr brain response")], title=title,
 
22
 
23
  load_dotenv()
24
 
25
+ title = 'Dr Brain Tumors 🧠'
26
  description = '''
27
  '''
28
 
 
92
 
93
 
94
  def make_llm_call(prompt,
95
+ context="You are a text generation model DR-Brain Developed by team brute force a team 4 AI engineers from RMKCET college they are HARSHA VARDHAN V , SAWIN KUMAR Y , CHARAN TEJA P, KISHORE S. Your specialized in medical stuff"):
96
  messages = [{"role": "user", "content": prompt}]
97
  if context:
98
  messages.insert(0, {"role": "system", "content": context})
 
101
  return response_message
102
 
103
 
104
+ def detector(tumor_file, slice_number, channel, language, audio_question, text_question):
105
  llm_answer = "Hi I'm Dr brain please enter a question to answer"
106
+ if text_question:
107
+ llm_answer = make_llm_call(text_question)
108
+ elif audio_question:
109
  sampling_rate, waveform = audio_question
110
  forced_decoder_ids = processor_whisper.get_decoder_prompt_ids(language=language, task="transcribe")
111
  waveform = process_audio(sampling_rate, waveform)
 
139
  gr.Slider(0, 200, 50, step=1, label="Slice Number"),
140
  gr.Radio((0, 1, 2), label="Channel"),
141
  gr.Radio(("english", "japanese", "german", "spanish"), label="Language"),
142
+ gr.Audio(source="microphone"),
143
+ gr.Textbox(label='Text Question')],
144
  outputs=[gr.Image(label='channel', shape=(1, 1)),
145
  gr.Image(label='Segmented Tumor', shape=(1, 1)),
146
  gr.Textbox(label="Dr brain response")], title=title,