thugCodeNinja commited on
Commit
41d4efd
·
verified ·
1 Parent(s): b40ee35

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -0
app.py ADDED
@@ -0,0 +1,49 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+ import librosa
4
+ from tensorflow.keras.models import load_model
5
+
6
+ # Constants
7
+ MAX_TIME_STEPS = 109
8
+ SAMPLE_RATE = 16000
9
+ DURATION = 5
10
+ N_MELS = 128
11
+ MODEL_PATH = "audio_classifier.h5" # Replace with the actual path to your saved model
12
+
13
+ # Load the pre-trained model
14
+ model = load_model(MODEL_PATH, compile=False)
15
+ model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
16
+
17
+ def classify_audio(audio):
18
+ # Convert the audio data to NumPy array
19
+ rate, ar = audio
20
+ arone = ar.astype(np.float32)
21
+ mel_spectrogram = librosa.feature.melspectrogram(y=arone, sr=SAMPLE_RATE, n_mels=N_MELS)
22
+ mel_spectrogram = librosa.power_to_db(mel_spectrogram, ref=np.max)
23
+
24
+ # Ensure all spectrograms have the same width (time steps)
25
+ if mel_spectrogram.shape[1] < MAX_TIME_STEPS:
26
+ mel_spectrogram = np.pad(mel_spectrogram, ((0, 0), (0, MAX_TIME_STEPS - mel_spectrogram.shape[1])), mode='constant')
27
+ else:
28
+ mel_spectrogram = mel_spectrogram[:, :MAX_TIME_STEPS]
29
+
30
+ # Reshape for the model
31
+ X_test = np.expand_dims(mel_spectrogram, axis=-1)
32
+ X_test = np.expand_dims(X_test, axis=0)
33
+
34
+ # Predict using the loaded model
35
+ y_pred = model.predict(X_test)
36
+
37
+ # Convert probabilities to predicted classes
38
+ y_pred_classes = np.argmax(y_pred, axis=1)
39
+
40
+ if(y_pred_classes[0]==1):
41
+ return f"Prediction: {'Not spoof'}"
42
+ else:
43
+ return f"Prediction: {'Spoof'}"
44
+
45
+ title="Audios Spoof detection using CNN"
46
+ description="The model was trained on the ASVspoof 2015 dataset with an aim to detect spoof audios through deep learning.To use it please upload an audio file of suitable length."
47
+
48
+ iface = gr.Interface(classify_audio, inputs=["audio"], outputs=["text"],title=title,description=description)
49
+ iface.launch()