thugCodeNinja commited on
Commit
1525307
·
verified ·
1 Parent(s): 82271e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -5,7 +5,7 @@ import shap
5
  import requests
6
  from bs4 import BeautifulSoup
7
  from sklearn.metrics.pairwise import cosine_similarity
8
- from transformers import RobertaTokenizer,RobertaForSequenceClassification, pipeline
9
  from IPython.core.display import HTML
10
  model_dir = 'temp'
11
  tokenizer = RobertaTokenizer.from_pretrained(model_dir)
@@ -64,8 +64,8 @@ def process_text(input_text):
64
 
65
  # Calculate embeddings using the model
66
  with torch.no_grad():
67
- embedding1 = model(**encoding1).last_hidden_state.mean(dim=1)
68
- embedding2 = model(**encoding2).last_hidden_state.mean(dim=1)
69
 
70
  # Calculate cosine similarity between the input text and the article text embeddings
71
  similarity = cosine_similarity(embedding1, embedding2)[0][0]
 
5
  import requests
6
  from bs4 import BeautifulSoup
7
  from sklearn.metrics.pairwise import cosine_similarity
8
+ from transformers import RobertaTokenizer,RobertaForSequenceClassification, pipeline,RobertaModel
9
  from IPython.core.display import HTML
10
  model_dir = 'temp'
11
  tokenizer = RobertaTokenizer.from_pretrained(model_dir)
 
64
 
65
  # Calculate embeddings using the model
66
  with torch.no_grad():
67
+ embedding1 = model1(**encoding1).last_hidden_state.mean(dim=1)
68
+ embedding2 = model1(**encoding2).last_hidden_state.mean(dim=1)
69
 
70
  # Calculate cosine similarity between the input text and the article text embeddings
71
  similarity = cosine_similarity(embedding1, embedding2)[0][0]