File size: 10,945 Bytes
8d8cebe d5cf104 8d8cebe d5cf104 8d8cebe d5cf104 8d8cebe d5cf104 8d8cebe 1873131 8d8cebe 8083b67 8d8cebe 1873131 8d8cebe 1873131 8083b67 1873131 8083b67 1873131 8083b67 1873131 8d8cebe 1873131 8d8cebe d5cf104 8d8cebe f7bc6a1 8083b67 f7bc6a1 8083b67 1873131 8083b67 1873131 8083b67 1873131 8083b67 f7bc6a1 8083b67 1873131 8083b67 f7bc6a1 8083b67 834c808 d5cf104 834c808 1873131 834c808 d5cf104 834c808 d5cf104 834c808 1873131 d5cf104 1873131 d5cf104 1873131 d5cf104 834c808 8d8cebe 7bc7b53 1873131 7bc7b53 8d8cebe 7bc7b53 8d8cebe 7bc7b53 8d8cebe 7bc7b53 8d8cebe d5cf104 8d8cebe d5cf104 1873131 d5cf104 1873131 8d8cebe d5cf104 8d8cebe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup UI"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loading settings from ../../env/ai.json\n"
]
}
],
"source": [
"import os\n",
"import json\n",
"\n",
"# If the file does not exist it'll default to the manual setting see below\n",
"filePathToSettingsFile = '../../env/ai.json'\n",
"\n",
"# Is there a settings file? \n",
"if os.path.exists(filePathToSettingsFile):\n",
" # Yes there is so load settings from there\n",
" \n",
" print(f'Loading settings from {filePathToSettingsFile}')\n",
" f = open(filePathToSettingsFile)\n",
" settingsJson = json.load(f)\n",
" del f\n",
"\n",
" for key in settingsJson:\n",
" os.environ[key] = settingsJson[key]\n",
" \n",
" del settingsJson\n",
"else: \n",
" # Set variables manually\n",
" \n",
" print('Setting variables manually as there is not ai.json settings file')\n",
"\n",
" # Update the variables below with your own settings\n",
" os.environ['REQUESTS_CA_BUNDLE'] = '../../env/ZCert.pem' \n",
" os.environ['HUGGING_FACE_API_KEY'] = 'Get here: https://huggingface.co/settings/tokens'\n",
" os.environ['OPENAI_API_KEY'] = 'Get here: https://platform.openai.com/account/api-keys'\n",
" os.environ[\"SERPAPI_API_KEY\"] = 'serpapi KEY, Get here: https://serpapi.com/manage-api-key' "
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import pinecone\n",
"from langchain.chains import RetrievalQA\n",
"from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.llms import OpenAI\n",
"from langchain.vectorstores import Pinecone\n",
"import gradio as gr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Setup Vector Store\n",
"There are two vector stores in Pinecone (hence the two API Keys). Each has a separate knowledge base\n",
"1. Roman history\n",
"2. A list of literature"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using vector store: Roman History\n",
"Using index: rag-demo-1-history-rome\n"
]
}
],
"source": [
"embeddings = OpenAIEmbeddings()\n",
"\n",
"vector_store = None\n",
"\n",
"def create_vector_store(indexToUse: str):\n",
" \n",
" if indexToUse == \"Roman History\":\n",
" print(f\"Using vector store: {indexToUse}\")\n",
" apiKeyKey = \"PINECONE_API_KEY_2\"\n",
" apiEnvKey = \"PINECONE_API_ENV_2\"\n",
" testQuestion = \"When was Ceasar born?\"\n",
" else:\n",
" print(f\"Using vector store: {indexToUse}\")\n",
" apiKeyKey = \"PINECONE_API_KEY\"\n",
" apiEnvKey = \"PINECONE_API_ENV\"\n",
" testQuestion = \"What is Moby Dick?\"\n",
" \n",
" pinecone.init(api_key=os.environ[apiKeyKey], environment=os.environ[apiEnvKey])\n",
"\n",
" index_name = pinecone.list_indexes()[0]\n",
" print(f\"Using index: {index_name}\")\n",
" index = pinecone.Index(index_name)\n",
" vector_store = Pinecone(index, embeddings, \"text\") \n",
"\n",
" # query = testQuestion\n",
" # print(f'Test questions: {testQuestion}')\n",
" # result = vector_store.similarity_search(query, k=3)\n",
" # print(result[0])\n",
" \n",
" return vector_store\n",
"\n",
"vector_store = create_vector_store(\"Roman History\")"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"llm = OpenAI(temperature=0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Conversational agent"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [],
"source": [
"from langchain.memory import ConversationBufferMemory\n",
"from langchain.chains import ConversationalRetrievalChain\n",
"\n",
"memory = ConversationBufferMemory(memory_key=\"chat_history\", return_messages= True)\n",
"chain = ConversationalRetrievalChain.from_llm(llm, retriever= vector_store.as_retriever(), memory= memory)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"' \\nCrassus was a Roman general who was killed in battle by the Parthians. He was killed while trying to extend the Roman Empire into the Middle East. Ceasar was avenging Crassus by trying to defeat the Parthians and expand the Roman Empire. He was also trying to avenge the death of his friend and mentor.'"
]
},
"execution_count": 68,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query = \"\"\" \n",
" SYSTEM:\n",
" You are a helpful teacher who is teaching a class of 10 year olds. \n",
" Your answers must only come from the context provided to you in the question.\n",
" If you don't know the answer then say so. \n",
" The answers should be at least 40 words or longer\n",
" \n",
" QUESTION:\n",
" Why was he avenging Crassus, what happened to him that Ceasar needed to avenge him? \n",
" \n",
"\"\"\"\n",
"chain.run({'question': query})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# UI\n",
"1. https://medium.com/@gabriel_renno/how-to-build-a-gpt3-5-powered-chatbot-for-your-landing-page-with-langchain-and-gradio-1236ddfb0cf1\n",
"2. https://github.com/RajKKapadia/YouTube-Pinecone-Demo"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [],
"source": [
"# RajKKapadi's \n",
"from langchain.chains import ConversationalRetrievalChain\n",
"from langchain.chat_models import ChatOpenAI\n",
"from langchain.vectorstores import Pinecone\n",
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.memory import ConversationBufferMemory\n",
"import pinecone\n",
"\n",
"def create_conversation(query: str, chat_history: list, indexToUse: str) -> tuple: \n",
" try:\n",
" #vector_store = create_vector_store(\"Roman History\")\n",
" print(indexToUse)\n",
" vector_store = create_vector_store(\"Literature\")\n",
" memory = ConversationBufferMemory(\n",
" memory_key='chat_history',\n",
" return_messages=False\n",
" )\n",
" cqa = ConversationalRetrievalChain.from_llm(\n",
" llm=ChatOpenAI(temperature=0.0,\n",
" openai_api_key=os.environ['OPENAI_API_KEY']),\n",
" retriever=vector_store.as_retriever(search_kwargs={\"k\": 5}),\n",
" memory=memory,\n",
" get_chat_history=lambda h: h,\n",
" )\n",
" result = cqa({'question': query, 'chat_history': chat_history})\n",
" chat_history.append((query, result['answer']))\n",
" return '', chat_history, indexToUse\n",
" except Exception as e:\n",
" chat_history.append((query, e))\n",
" return '', chat_history"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [],
"source": [
"\n",
"\n",
"# vector_store_index_to_use = None \n",
"# def set_vector_store_index(indexName:str):\n",
"# vector_store_index_to_use = indexName\n",
" \n",
"# with gr.Blocks() as demo:\n",
"# indexToUseDD = gr.Dropdown(choices=[\"Roman History\", \"Literature\"])"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7918\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7918/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n",
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n",
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n",
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n",
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n",
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n",
"Literature\n",
"Using vector store: Literature\n",
"Using index: rag-demo-1-literature\n"
]
}
],
"source": [
"import gradio as gr\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.Markdown(\"Chat to docs\")\n",
" indexToUseDD = gr.Dropdown(choices=[\"Roman History\", \"Literature\"])\n",
" chatbot = gr.Chatbot(label='Talk to the Doument')\n",
" msg = gr.Textbox()\n",
" \n",
" submitBtn = gr.Button(value=\"Submit\") \n",
" clear = gr.ClearButton([msg, chatbot])\n",
"\n",
" msg.submit(create_conversation, [msg, chatbot, indexToUseDD], [msg, chatbot, indexToUseDD])\n",
" submitBtn.click(create_conversation, [msg, chatbot, indexToUseDD], [msg, chatbot, indexToUseDD])\n",
"\n",
"if __name__ == '__main__':\n",
" demo.launch(show_error=True) #show_error=True, debug=True)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": ".venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|