File size: 10,319 Bytes
da4b287 8d8cebe da4b287 b96faa7 8d8cebe b96faa7 da4b287 8d8cebe da4b287 8d8cebe da4b287 8d8cebe da4b287 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# %%
import os
import json
pathToSettings = '../../env/ai.json'
if os.path.exists(pathToSettings):
# Load setting from Json outside of project.
print(f'Reading settings from {pathToSettings}')
f = open(pathToSettings)
settingsJson = json.load(f)
del f
for key in settingsJson:
os.environ[key] = settingsJson[key]
del settingsJson
else:
# Manually set settings
os.environ['HUGGING_FACE_API_KEY'] = 'Get here: https://huggingface.co/settings/tokens'
os.environ['OPENAI_API_KEY'] = 'Get here: https://platform.openai.com/account/api-keys'
# %% [markdown]
# # Setup Web Crawler and Lookup functions
# %%
import requests
from bs4 import BeautifulSoup
import json
import validators
def remove_keys(dictionary: dict, keyList: list):
for key in keyList:
if key in dictionary:
del dictionary[key]
def get_recipe_as_json(url: str) -> dict:
url = url.replace("'", "").replace('"', '')
if not validators.url(url):
return {'error': 'Invalid url format', 'url': url }
html = requests.get(url).text
soup = BeautifulSoup(html, features='html.parser')
script = soup.find_all("script", {"id": "allrecipes-schema_1-0"})
recipeDict = json.loads(script[0].text)[0]
remove_keys(recipeDict, ['review', 'image', 'mainEntityOfPage', 'publisher'])
return recipeDict
# url = "https://www.allrecipes.com/recipe/212498/easy-chicken-and-broccoli-alfredo/"
# obj = get_recipe_as_json(url)
# x = get_recipe_as_json('https://www.allrecipes.com/recipe/235153/easy-baked-chicken-thighs/')
# print(x)
# %% [markdown]
# # Static recipe lists
# %%
dessertList = [
{
"title": "Chocolate Snack Cake",
"url": "https://www.allrecipes.com/chocolate-snack-cake-recipe-8350343"
},
{
"title": "Charred Spiced Pears with Smoky Vanilla Cherry Sauce",
"url": "https://www.allrecipes.com/charred-spiced-pears-with-smoky-vanilla-cherry-sauce-recipe-8347080"
},
{
"title": "Meringue Topped Banana Pudding",
"url": "https://www.allrecipes.com/meringue-topped-banana-pudding-recipe-8347040"
},
{
"title": "White Chocolate Cinnamon Toast Crunch Bars",
"url": "https://www.allrecipes.com/white-chocolate-cinnamon-toast-crunch-bars-recipe-7556790"
},
{
"title": "Plum Cobbler for Two",
"url": "https://www.allrecipes.com/plum-cobbler-for-two-recipe-8304143"
},
{
"title": "Pumpkin Cheesecake Cookies",
"url": "https://www.allrecipes.com/pumpkin-cheesecake-cookies-recipe-7972485"
},
{
"title": "Chocolate Whipped Cottage Cheese",
"url": "https://www.allrecipes.com/chocolate-whipped-cottage-cheese-recipe-8303272"
},
{
"title": "Nutella Ice Cream",
"url": "https://www.allrecipes.com/nutella-ice-cream-recipe-7508716"
},
{
"title": "3-Ingredient Banana Oatmeal Cookies",
"url": "https://www.allrecipes.com/3-ingredient-banana-oatmeal-cookies-recipe-7972686"
},
{
"title": "Caramel Apple Pie Cookies",
"url": "https://www.allrecipes.com/caramel-apple-pie-cookies-recipe-7642173"
}
]
chickenDishList = [
{
"title": "Crispy Roasted Chicken",
"url": "https://www.allrecipes.com/recipe/228363/crispy-roasted-chicken/"
},
{
"title": "Roasted Spatchcocked Chicken With Potatoes",
"url": "https://www.allrecipes.com/recipe/254877/roasted-spatchcocked-chicken-with-potatoes/"
},
{
"title": "Easy Baked Chicken Thighs",
"url": "https://www.allrecipes.com/recipe/235153/easy-baked-chicken-thighs/"
},
{
"title": "Crispy Baked Chicken Thighs",
"url": "https://www.allrecipes.com/recipe/258878/crispy-baked-chicken-thighs/"
},
{
"title": "Crispy and Tender Baked Chicken Thighs",
"url": "https://www.allrecipes.com/recipe/235151/crispy-and-tender-baked-chicken-thighs/"
},
{
"title": "Million Dollar Chicken",
"url": "https://www.allrecipes.com/recipe/233953/million-dollar-chicken/"
},
{
"title": "Simple Whole Roasted Chicken",
"url": "https://www.allrecipes.com/recipe/70679/simple-whole-roasted-chicken/"
},
{
"title": "Beer Can Chicken",
"url": "https://www.allrecipes.com/recipe/214618/beer-can-chicken/"
},
{
"title": "Air Fryer Chicken Thighs",
"url": "https://www.allrecipes.com/recipe/272858/air-fryer-chicken-thighs/"
},
{
"title": "Happy Roast Chicken",
"url": "https://www.allrecipes.com/recipe/214478/happy-roast-chicken/"
}
]
# %% [markdown]
# # Setup Tools
# %%
# Tools
from langchain.agents import Tool
# Chicken functions
def list_chicken_recipes(query: str):
return chickenDishList
list_chicken_recipes_tool = Tool(name='Chicken Recipes tool', func= list_chicken_recipes, description="This tools lists the available Chicken Recipes it returns a list of recipes with a TITLE and a URL where you can fetch the recipe.")
# Dessert functions
def list_dessert_recipes(query: str):
return dessertList
list_dessert_recipes_tool = Tool(name='Dessert Recipes tool', func=list_dessert_recipes,
description="This tools lists the available Dessert Recipes it returns a list of recipes with a TITLE and a URL where you can fetch the recipe.")
# Recipe fetcher functions
def get_recipe(url: str):
return get_recipe_as_json(url)
get_recipe_as_json_tool = Tool(name='Get a Recipe tool', func=get_recipe, description="""
Useful for fetching a particular recipe, you can only fetch a recipe with it's url, you must get that using another tool
It uses the https://schema.org/Recipe format to store it's recipes.
""")
# Tool list
tools = [list_chicken_recipes_tool, list_dessert_recipes_tool, get_recipe_as_json_tool]
# %%
print('Chicken dishes:')
for i in chickenDishList:
print(i['title'])
print('')
print('Desserts:')
for i in dessertList:
print(i['title'])
# %% [markdown]
# # LLM
# Links
#
#
# 1 [tracking-inspecting-prompts-langchain-agents-weights-and-biases](https://kleiber.me/blog/2023/05/14/tracking-inspecting-prompts-langchain-agents-weights-and-biases/)
# %%
from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.llms import OpenAI
from langchain.chat_models import ChatOpenAI
from langchain.callbacks import StdOutCallbackHandler
from langchain.agents import initialize_agent
# llm = ChatOpenAI(temperature=0, model_name='gpt-4') # 'gpt-3.5-turbo'
# agent = initialize_agent(agent="zero-shot-react-description", tools=tools, llm=llm, verbose=True, max_iterations=7, return_intermediate_steps=True)
# system = "If the answer is not in the tools or context passed to you then don't answer. \nIf you don't know the answer then say so."
# #query = "Can you show tell me what ingredients I need for the first baked chicken recipe?"
# #query = "Can you show tell me what ingredients I need for the last baked chicken recipe? "
# #query = "What is the best baked chicken recipe? Please look across all recipes with the word 'baked' in the title" # There are 3 baked chicken recipes
# #query = "Is there a Chicken recipe that's prepared with an alchohol? And if so how long does it take in total from start time to finish?"
# #query = "Which is healthier the Caramel Apple Pie Cookies or the beer chicken? Please explain how you got to your answer."
# #query = "Is the moon closer to earth or the sun?"
# #query = "How good are the apple pie cookies?"
# query = "What tools do I need for the Nutella Ice Cream?"
# #query = "My bowl is broken, can I still make Nutella Ice Cream? Answer as a yes/no."
# response = agent({"input": f"{system} {query}"})
# %%
from langchain.load.dump import dumps
# %% [markdown]
# # UI - Simple UI
# %%
import gradio as gr
def ask_query(query):
# LLM
llm = ChatOpenAI(temperature=0, model_name='gpt-4') # 'gpt-3.5-turbo'
agent = initialize_agent(agent="zero-shot-react-description", tools=tools, llm=llm, verbose=True, max_iterations=7, return_intermediate_steps=True)
system = "If the answer is not in the tools or context passed to you then don't answer. \nIf you don't know the answer then say so."
# #query = "Can you show tell me what ingredients I need for the first baked chicken recipe?"
# #query = "Can you show tell me what ingredients I need for the last baked chicken recipe? "
# #query = "What is the best baked chicken recipe? Please look across all recipes with the word 'baked' in the title" # There are 3 baked chicken recipes
# #query = "Is there a Chicken recipe that's prepared with an alchohol? And if so how long does it take in total from start time to finish?"
# #query = "Which is healthier the Caramel Apple Pie Cookies or the beer chicken? Please explain how you got to your answer."
# #query = "Is the moon closer to earth or the sun?"
# #query = "How good are the apple pie cookies?"
#query = "What tools do I need for the Nutella Ice Cream?"
# #query = "My bowl is broken, can I still make Nutella Ice Cream? Answer as a yes/no."
response = agent({"input": f"{system} {query}"})
# Show response
stepsDict = json.loads(dumps(response["intermediate_steps"], pretty=True))
resp = 'Below are the steps the agent took to get to the Final Answer. \n"Thought" is the LLMs internal dialogue, \n"Action" is the tool it will use to fetch the next piece of information. \n"Action Input" is the input it passes the tool to fetch this information. \n"Action Response" is what was returned from the tool to the LLM at that given step. '
resp += '\n\n'
resp += 'Steps to solve answer using ReAct\n'
for i in range(len(stepsDict)):
resp += '##########################################\n'
resp += f'Step: {i+1} of {len(stepsDict)}\n'
resp += f"Thought: {stepsDict[i][0]['kwargs']['log']}\n"
resp += 'Below is what the tool returned...\n'
resp += f"Action response: {stepsDict[i][1]}\n"
resp += '\n'
resp += '\nFinal Thought:\n'
resp += response['output']
return resp
demo = gr.Interface(fn=ask_query, inputs="text", outputs="text", allow_flagging=False)
#gr.Markdown("# Hello there")
#gr.Examples("text", "text")
demo.launch(show_error=True)
|