Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- app.py +97 -3
- hello.mp3 +0 -0
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,7 +1,101 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import random
|
3 |
+
import time
|
4 |
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import numpy as np
|
7 |
+
import sphn
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from moshi.models import loaders
|
11 |
+
|
12 |
+
|
13 |
+
def seed_all(seed):
|
14 |
+
torch.manual_seed(seed)
|
15 |
+
if torch.cuda.is_available():
|
16 |
+
torch.cuda.manual_seed(seed)
|
17 |
+
torch.cuda.manual_seed_all(seed) # for multi-GPU setups
|
18 |
+
random.seed(seed)
|
19 |
+
np.random.seed(seed)
|
20 |
+
torch.backends.cudnn.deterministic = True
|
21 |
+
torch.backends.cudnn.benchmark = False
|
22 |
+
|
23 |
+
|
24 |
+
seed_all(42424242)
|
25 |
+
|
26 |
+
device = "cuda" if torch.cuda.device_count() else "cpu"
|
27 |
+
num_codebooks = 32
|
28 |
+
|
29 |
+
print("loading mimi")
|
30 |
+
model_file = hf_hub_download(loaders.DEFAULT_REPO, "tokenizer-e351c8d8-checkpoint125.safetensors")
|
31 |
+
|
32 |
+
mimi = loaders.get_mimi(model_file, device, num_codebooks=num_codebooks)
|
33 |
+
mimi.eval()
|
34 |
+
print("mimi loaded")
|
35 |
+
|
36 |
+
|
37 |
+
def mimi_streaming_test(input_wave, max_duration_sec=10.0):
|
38 |
+
pcm_chunk_size = int(mimi.sample_rate / mimi.frame_rate)
|
39 |
+
# wget https://github.com/metavoiceio/metavoice-src/raw/main/assets/bria.mp3
|
40 |
+
sample_pcm, sample_sr = sphn.read(input_wave) # ("bria.mp3")
|
41 |
+
sample_rate = mimi.sample_rate
|
42 |
+
print("loaded pcm", sample_pcm.shape, sample_sr)
|
43 |
+
sample_pcm = sphn.resample(
|
44 |
+
sample_pcm, src_sample_rate=sample_sr, dst_sample_rate=sample_rate
|
45 |
+
)
|
46 |
+
sample_pcm = torch.tensor(sample_pcm, device=device)
|
47 |
+
max_duration_len = int(sample_rate * max_duration_sec)
|
48 |
+
if sample_pcm.shape[-1] > max_duration_len:
|
49 |
+
sample_pcm = sample_pcm[..., :max_duration_len]
|
50 |
+
print("resampled pcm", sample_pcm.shape, sample_sr)
|
51 |
+
sample_pcm = sample_pcm[None].to(device=device)
|
52 |
+
|
53 |
+
print("streaming encoding...")
|
54 |
+
start_time = time.time()
|
55 |
+
all_codes = []
|
56 |
+
|
57 |
+
def run_loop():
|
58 |
+
for start_idx in range(0, sample_pcm.shape[-1], pcm_chunk_size):
|
59 |
+
end_idx = min(sample_pcm.shape[-1], start_idx + pcm_chunk_size)
|
60 |
+
chunk = sample_pcm[..., start_idx:end_idx]
|
61 |
+
with torch.no_grad():
|
62 |
+
codes = mimi.encode(chunk)
|
63 |
+
if codes.shape[-1]:
|
64 |
+
print(start_idx, codes.shape, end="\r")
|
65 |
+
all_codes.append(codes)
|
66 |
+
|
67 |
+
run_loop()
|
68 |
+
all_codes_th = torch.cat(all_codes, dim=-1)
|
69 |
+
print(f"codes {all_codes_th.shape} generated in {time.time() - start_time:.2f}s")
|
70 |
+
|
71 |
+
all_codes_list = [all_codes_th[:, :1, :],
|
72 |
+
all_codes_th[:, :2, :],
|
73 |
+
all_codes_th[:, :4, :],
|
74 |
+
# all_codes_th[:, :8, :],
|
75 |
+
# all_codes_th[:, :16, :],
|
76 |
+
all_codes_th[:, :32, :]]
|
77 |
+
pcm_list = []
|
78 |
+
for i, all_codes_th in enumerate(all_codes_list):
|
79 |
+
with torch.no_grad():
|
80 |
+
print(f"decoding {i+1} codebooks, {all_codes_th.shape}")
|
81 |
+
pcm = mimi.decode(all_codes_th)
|
82 |
+
pcm_list.append((sample_rate, pcm[0, 0].cpu().numpy()))
|
83 |
+
# sphn.write_wav("roundtrip_out.wav", pcm[0, 0].cpu().numpy(), sample_rate)
|
84 |
+
return pcm_list
|
85 |
+
|
86 |
+
|
87 |
+
demo = gr.Interface(
|
88 |
+
fn=mimi_streaming_test,
|
89 |
+
inputs=gr.Audio(sources=["microphone", "upload"], type="filepath"),
|
90 |
+
outputs=[gr.Audio(type="numpy", label="With 1 codebook"),
|
91 |
+
gr.Audio(type="numpy", label="With 2 codebooks"),
|
92 |
+
gr.Audio(type="numpy", label="With 4 codebooks"),
|
93 |
+
# gr.Audio(type="numpy", label="With 8 codebooks"),
|
94 |
+
# gr.Audio(type="numpy", label="With 16 codebooks"),
|
95 |
+
gr.Audio(type="numpy", label="With 32 codebooks")],
|
96 |
+
examples= [["hello.mp3"]],
|
97 |
+
title="Mimi tokenizer playground",
|
98 |
+
description="Explore the quality of compression when using various number of code books in the Mimi model."
|
99 |
+
)
|
100 |
|
|
|
101 |
demo.launch()
|
hello.mp3
ADDED
Binary file (5.76 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
moshi
|