File size: 7,417 Bytes
4915594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# this file is a WIP and an attempt to locally recreate https://colab.research.google.com/drive/1-h3rPUzV-j9VzD9Rg7ZLGKEp-jMNFaje?usp=sharing
# this script is not working as expected, it is not able to load the training data from the file

import uuid
import tqdm
import json
import asyncio
from pathlib import Path
from dotenv import load_dotenv

from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter

CHUNK_SIZE = 1000
CHUNK_OVERLAP = CHUNK_SIZE // 2

QA_PROMPT = """\
Given the following context, you must generate questions based on only the provided context.

You are to generate {n_questions} questions which should be provided in the following format:

1. QUESTION #1
2. QUESTION #2
...

Context:
{context}
"""

fine_tuning_data_filepath = Path("data/finetuning") 
fine_tuning_data_filepath.mkdir(parents=True, exist_ok=True)

async def create_questions(documents, n_questions, question_generation_chain):
  questions = {}
  relevant_docs = {}

  for document in tqdm.tqdm(documents):
    context = document.page_content

    # get questions by invoking the question generation chain
    response = await question_generation_chain.ainvoke(
        {"context": context, "n_questions": n_questions}
    )

    # split the response into two questions
    [question1, question2] = response.content.split("\n")

    # generate a unique id for the first question
    id1 = str(uuid.uuid4())
    while id1 in questions:
        id1 = str(uuid.uuid4())
    # store the first question
    questions[id1] = question1[2:].strip()

    # generate a unique id for the second question
    id2 = str(uuid.uuid4())
    while id2 in questions:
        id2 = str(uuid.uuid4())
    # store the second question
    questions[id2] = question2[2:].strip()

    # Store the relevant doc for each questions
    relevant_docs[id1] = [document.metadata["id"]]
    relevant_docs[id2] = [document.metadata["id"]]

  return questions, relevant_docs

async def main():
  path = "data/scraped/clean"
  text_loader = DirectoryLoader(path, glob="*.txt", loader_cls=UnstructuredMarkdownLoader)
  text_splitter = RecursiveCharacterTextSplitter(
    chunk_size = CHUNK_SIZE,
    chunk_overlap  = CHUNK_OVERLAP,
    length_function = len
  )
  training_documents = text_splitter.split_documents(text_loader.load())

  # Add unique id to each document
  id_set = set()
  for document in training_documents:
    id = str(uuid.uuid4())
    while id in id_set:
      id = uuid.uuid4()
    id_set.add(id)
    document.metadata["id"] = id

  TRAINING_DOC_LENGTH = len(training_documents)
  BREAK1 = TRAINING_DOC_LENGTH - 24
  BREAK2 = TRAINING_DOC_LENGTH - 12

  training_split_documents = training_documents[:TRAINING_DOC_LENGTH - 24]
  eval_split_documents = training_documents[BREAK1:BREAK2]
  test_split_documents = training_documents[BREAK2:]

  qa_chat_model = ChatOpenAI(
    model="gpt-4o-mini",
    temperature=0
  )

  qa_prompt_template = ChatPromptTemplate.from_template(QA_PROMPT)
  question_generation_chain = qa_prompt_template | qa_chat_model

  # try to load training data from file otherwise generate new data
  try:
    training_dataset = json.load(open(fine_tuning_data_filepath / "training_dataset.jsonl"))
    training_questions = training_dataset["questions"]
    training_relevant_contexts = training_dataset["relevant_contexts"]
    training_corpus = training_dataset["corpus"]
  except:
    training_questions, training_relevant_contexts = await create_questions(training_split_documents, 2, question_generation_chain)
    training_corpus = {test_item.metadata["id"] : test_item.page_content for test_item in test_split_documents}
    training_dataset = { 
      "questions" : training_questions,
      "relevant_contexts" : training_relevant_contexts,
      "corpus" : training_corpus
    }
    with open(fine_tuning_data_filepath /"training_dataset.jsonl", "w") as f:
      json.dump(training_dataset, f)
    
  # try to load eval data from file otherwise generate new data
  try:
    eval_dataset = json.load(open(fine_tuning_data_filepath / "eval_dataset.jsonl"))
    eval_questions = eval_dataset["questions"]
    eval_relevant_contexts = eval_dataset["relevant_contexts"]
    eval_corpus = eval_dataset["corpus"]
  except:
    eval_questions, eval_relevant_contexts = await create_questions(eval_split_documents, 2, question_generation_chain)
    eval_corpus = {eval_item.metadata["id"] : eval_item.page_content for eval_item in eval_split_documents}
    eval_dataset = {
      "questions" : eval_questions,
      "relevant_contexts" : eval_relevant_contexts,
      "corpus" : eval_corpus,
    }
    with open(fine_tuning_data_filepath /"eval_dataset.jsonl", "w") as f:
      json.dump(eval_dataset, f)

  # try to load test data from file otherwise generate new data
  try:
    test_dataset = json.load(open(fine_tuning_data_filepath / "test_dataset.jsonl"))
    test_questions = test_dataset["questions"]
    test_relevant_contexts = test_dataset["relevant_contexts"]
    test_corpus = test_dataset["corpus"]
  except:
    test_questions, test_relevant_contexts = await create_questions(test_split_documents, 2, question_generation_chain)
    test_corpus = {test_item.metadata["id"] : test_item.page_content for test_item in test_split_documents}
    test_dataset = {
      "questions" : test_questions,
      "relevant_contexts" : test_relevant_contexts,
      "corpus" : test_corpus,
    }
    with open(fine_tuning_data_filepath /"test_dataset.jsonl", "w") as f:
      json.dump(test_dataset, f)
  
  import wandb
  from torch.utils.data import DataLoader
  from sentence_transformers import InputExample, SentenceTransformer
  from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
  from sentence_transformers.evaluation import InformationRetrievalEvaluator
  from huggingface_hub import notebook_login

  BATCH_SIZE = 10
  MODEL_ID = "Snowflake/snowflake-arctic-embed-l"

  model = SentenceTransformer(MODEL_ID)
  wandb.init(mode="disabled")

  corpus = training_dataset['corpus']
  queries = training_dataset['questions']
  relevant_docs = training_dataset['relevant_contexts']

  examples = []
  for query_id, query in queries.items():
    doc_id = relevant_docs[query_id][0]
    text = corpus[doc_id]
    example = InputExample(texts=[query, text])
    examples.append(example)

  loader = DataLoader(
      examples, batch_size=BATCH_SIZE
  )

  matryoshka_dimensions = [768, 512, 256, 128, 64]
  inner_train_loss = MultipleNegativesRankingLoss(model)
  train_loss = MatryoshkaLoss(
    model, inner_train_loss, matryoshka_dims=matryoshka_dimensions
  )

  evaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs)

  EPOCHS = 10
  warmup_steps = int(len(loader) * EPOCHS * 0.1)

  model.fit(
    train_objectives=[(loader, train_loss)],
    epochs=EPOCHS,
    warmup_steps=warmup_steps,
    output_path='AIE5-MidTerm-finetuned-embeddings',
    show_progress_bar=True,
    evaluator=evaluator,
    evaluation_steps=50
  )

  notebook_login()
  hf_username = "thomfoolery"
  model.push_to_hub(f"{hf_username}/AIE5-MidTerm-finetuned-embeddings")





if __name__ == "__main__":
  load_dotenv()
  asyncio.run(main())