Spaces:
Sleeping
Sleeping
File size: 7,417 Bytes
4915594 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
# this file is a WIP and an attempt to locally recreate https://colab.research.google.com/drive/1-h3rPUzV-j9VzD9Rg7ZLGKEp-jMNFaje?usp=sharing
# this script is not working as expected, it is not able to load the training data from the file
import uuid
import tqdm
import json
import asyncio
from pathlib import Path
from dotenv import load_dotenv
from langchain_openai import ChatOpenAI
from langchain_core.prompts import ChatPromptTemplate
from langchain_community.document_loaders import DirectoryLoader
from langchain_community.document_loaders import UnstructuredMarkdownLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
CHUNK_SIZE = 1000
CHUNK_OVERLAP = CHUNK_SIZE // 2
QA_PROMPT = """\
Given the following context, you must generate questions based on only the provided context.
You are to generate {n_questions} questions which should be provided in the following format:
1. QUESTION #1
2. QUESTION #2
...
Context:
{context}
"""
fine_tuning_data_filepath = Path("data/finetuning")
fine_tuning_data_filepath.mkdir(parents=True, exist_ok=True)
async def create_questions(documents, n_questions, question_generation_chain):
questions = {}
relevant_docs = {}
for document in tqdm.tqdm(documents):
context = document.page_content
# get questions by invoking the question generation chain
response = await question_generation_chain.ainvoke(
{"context": context, "n_questions": n_questions}
)
# split the response into two questions
[question1, question2] = response.content.split("\n")
# generate a unique id for the first question
id1 = str(uuid.uuid4())
while id1 in questions:
id1 = str(uuid.uuid4())
# store the first question
questions[id1] = question1[2:].strip()
# generate a unique id for the second question
id2 = str(uuid.uuid4())
while id2 in questions:
id2 = str(uuid.uuid4())
# store the second question
questions[id2] = question2[2:].strip()
# Store the relevant doc for each questions
relevant_docs[id1] = [document.metadata["id"]]
relevant_docs[id2] = [document.metadata["id"]]
return questions, relevant_docs
async def main():
path = "data/scraped/clean"
text_loader = DirectoryLoader(path, glob="*.txt", loader_cls=UnstructuredMarkdownLoader)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = CHUNK_SIZE,
chunk_overlap = CHUNK_OVERLAP,
length_function = len
)
training_documents = text_splitter.split_documents(text_loader.load())
# Add unique id to each document
id_set = set()
for document in training_documents:
id = str(uuid.uuid4())
while id in id_set:
id = uuid.uuid4()
id_set.add(id)
document.metadata["id"] = id
TRAINING_DOC_LENGTH = len(training_documents)
BREAK1 = TRAINING_DOC_LENGTH - 24
BREAK2 = TRAINING_DOC_LENGTH - 12
training_split_documents = training_documents[:TRAINING_DOC_LENGTH - 24]
eval_split_documents = training_documents[BREAK1:BREAK2]
test_split_documents = training_documents[BREAK2:]
qa_chat_model = ChatOpenAI(
model="gpt-4o-mini",
temperature=0
)
qa_prompt_template = ChatPromptTemplate.from_template(QA_PROMPT)
question_generation_chain = qa_prompt_template | qa_chat_model
# try to load training data from file otherwise generate new data
try:
training_dataset = json.load(open(fine_tuning_data_filepath / "training_dataset.jsonl"))
training_questions = training_dataset["questions"]
training_relevant_contexts = training_dataset["relevant_contexts"]
training_corpus = training_dataset["corpus"]
except:
training_questions, training_relevant_contexts = await create_questions(training_split_documents, 2, question_generation_chain)
training_corpus = {test_item.metadata["id"] : test_item.page_content for test_item in test_split_documents}
training_dataset = {
"questions" : training_questions,
"relevant_contexts" : training_relevant_contexts,
"corpus" : training_corpus
}
with open(fine_tuning_data_filepath /"training_dataset.jsonl", "w") as f:
json.dump(training_dataset, f)
# try to load eval data from file otherwise generate new data
try:
eval_dataset = json.load(open(fine_tuning_data_filepath / "eval_dataset.jsonl"))
eval_questions = eval_dataset["questions"]
eval_relevant_contexts = eval_dataset["relevant_contexts"]
eval_corpus = eval_dataset["corpus"]
except:
eval_questions, eval_relevant_contexts = await create_questions(eval_split_documents, 2, question_generation_chain)
eval_corpus = {eval_item.metadata["id"] : eval_item.page_content for eval_item in eval_split_documents}
eval_dataset = {
"questions" : eval_questions,
"relevant_contexts" : eval_relevant_contexts,
"corpus" : eval_corpus,
}
with open(fine_tuning_data_filepath /"eval_dataset.jsonl", "w") as f:
json.dump(eval_dataset, f)
# try to load test data from file otherwise generate new data
try:
test_dataset = json.load(open(fine_tuning_data_filepath / "test_dataset.jsonl"))
test_questions = test_dataset["questions"]
test_relevant_contexts = test_dataset["relevant_contexts"]
test_corpus = test_dataset["corpus"]
except:
test_questions, test_relevant_contexts = await create_questions(test_split_documents, 2, question_generation_chain)
test_corpus = {test_item.metadata["id"] : test_item.page_content for test_item in test_split_documents}
test_dataset = {
"questions" : test_questions,
"relevant_contexts" : test_relevant_contexts,
"corpus" : test_corpus,
}
with open(fine_tuning_data_filepath /"test_dataset.jsonl", "w") as f:
json.dump(test_dataset, f)
import wandb
from torch.utils.data import DataLoader
from sentence_transformers import InputExample, SentenceTransformer
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.evaluation import InformationRetrievalEvaluator
from huggingface_hub import notebook_login
BATCH_SIZE = 10
MODEL_ID = "Snowflake/snowflake-arctic-embed-l"
model = SentenceTransformer(MODEL_ID)
wandb.init(mode="disabled")
corpus = training_dataset['corpus']
queries = training_dataset['questions']
relevant_docs = training_dataset['relevant_contexts']
examples = []
for query_id, query in queries.items():
doc_id = relevant_docs[query_id][0]
text = corpus[doc_id]
example = InputExample(texts=[query, text])
examples.append(example)
loader = DataLoader(
examples, batch_size=BATCH_SIZE
)
matryoshka_dimensions = [768, 512, 256, 128, 64]
inner_train_loss = MultipleNegativesRankingLoss(model)
train_loss = MatryoshkaLoss(
model, inner_train_loss, matryoshka_dims=matryoshka_dimensions
)
evaluator = InformationRetrievalEvaluator(queries, corpus, relevant_docs)
EPOCHS = 10
warmup_steps = int(len(loader) * EPOCHS * 0.1)
model.fit(
train_objectives=[(loader, train_loss)],
epochs=EPOCHS,
warmup_steps=warmup_steps,
output_path='AIE5-MidTerm-finetuned-embeddings',
show_progress_bar=True,
evaluator=evaluator,
evaluation_steps=50
)
notebook_login()
hf_username = "thomfoolery"
model.push_to_hub(f"{hf_username}/AIE5-MidTerm-finetuned-embeddings")
if __name__ == "__main__":
load_dotenv()
asyncio.run(main()) |