Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -30,8 +30,20 @@ example_outputs_1 = [
|
|
30 |
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/flamethrower,_with_fire,_scifi,_cyberpunk,_photorealistic,_8K,_HD.mp4'), autoplay=True)
|
31 |
]
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
|
|
|
|
35 |
def main(prompt, iteration,CFG, seed):
|
36 |
if [prompt] in example_inputs:
|
37 |
return example_outputs_1[example_inputs.index([prompt])]
|
@@ -49,11 +61,12 @@ def main(prompt, iteration,CFG, seed):
|
|
49 |
return gr.Video(value=path, autoplay=True)
|
50 |
|
51 |
with gr.Blocks() as demo:
|
52 |
-
|
53 |
-
gr.Markdown("
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
57 |
gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
|
58 |
gr.Slider(0, 2000, value=1200, label="Number of iteration"),
|
59 |
gr.Slider(80, 200, value=100, label="CFG"),
|
@@ -62,4 +75,4 @@ with gr.Blocks() as demo:
|
|
62 |
examples=example_inputs,
|
63 |
cache_examples=True,
|
64 |
concurrency_limit=1)
|
65 |
-
demo.launch()
|
|
|
30 |
gr.Video(value=os.path.join(os.path.dirname(__file__), 'example/flamethrower,_with_fire,_scifi,_cyberpunk,_photorealistic,_8K,_HD.mp4'), autoplay=True)
|
31 |
]
|
32 |
|
33 |
+
from shap_e.diffusion.sample import sample_latents
|
34 |
+
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config as diffusion_from_config_shape
|
35 |
+
from shap_e.models.download import load_model, load_config
|
36 |
+
from shap_e.util.notebooks import create_pan_cameras, decode_latent_images, gif_widget
|
37 |
+
from shap_e.util.notebooks import decode_latent_mesh
|
38 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
39 |
+
xm = load_model('transmitter', device=device)
|
40 |
+
model = load_model('text300M', device=device)
|
41 |
+
# model.load_state_dict(torch.load('./load/shapE_finetuned_with_330kdata.pth', map_location=device)['model_state_dict'])
|
42 |
+
diffusion = diffusion_from_config_shape(load_config('diffusion'))
|
43 |
|
44 |
+
del xm
|
45 |
+
del model
|
46 |
+
del diffusion
|
47 |
def main(prompt, iteration,CFG, seed):
|
48 |
if [prompt] in example_inputs:
|
49 |
return example_outputs_1[example_inputs.index([prompt])]
|
|
|
61 |
return gr.Video(value=path, autoplay=True)
|
62 |
|
63 |
with gr.Blocks() as demo:
|
64 |
+
|
65 |
+
gr.Markdown("# <center>GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models</center>")
|
66 |
+
gr.Markdown("This live demo allows you to generate high-quality 3D content using text prompts. The outputs are 360° rendered 3d video.<br> \
|
67 |
+
It is based on Stable Diffusion 2.1-base. Please check out our <strong><a href=https://taoranyi.com/gaussiandreamer/>Project Page</a> / <a href=https://arxiv.org/abs/2310.08529>Paper</a> / <a href=https://github.com/hustvl/GaussianDreamer>Code</a></strong> if you want to learn more about our method!<br> \
|
68 |
+
Note that this demo is running on T4, the running time might be longer than the reported 15 minutes (1200 iterations) on RTx 3090.<br> \
|
69 |
+
© This Gradio space is developed by Taoran Yi.")
|
70 |
gr.Interface(fn=main, inputs=[gr.Textbox(lines=2, value="A portrait of IRONMAN, white hair, head, photorealistic, 8K, HDR.", label="Your prompt"),
|
71 |
gr.Slider(0, 2000, value=1200, label="Number of iteration"),
|
72 |
gr.Slider(80, 200, value=100, label="CFG"),
|
|
|
75 |
examples=example_inputs,
|
76 |
cache_examples=True,
|
77 |
concurrency_limit=1)
|
78 |
+
demo.launch()
|