Spaces:
Runtime error
Runtime error
from dataclasses import dataclass, field | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import threestudio | |
from threestudio.models.geometry.base import ( | |
BaseGeometry, | |
BaseImplicitGeometry, | |
contract_to_unisphere, | |
) | |
from threestudio.models.networks import get_encoding, get_mlp | |
from threestudio.utils.ops import get_activation | |
from threestudio.utils.typing import * | |
class ImplicitVolume(BaseImplicitGeometry): | |
class Config(BaseImplicitGeometry.Config): | |
n_input_dims: int = 3 | |
n_feature_dims: int = 3 | |
density_activation: Optional[str] = "softplus" | |
density_bias: Union[float, str] = "blob_magic3d" | |
density_blob_scale: float = 10.0 | |
density_blob_std: float = 0.5 | |
pos_encoding_config: dict = field( | |
default_factory=lambda: { | |
"otype": "HashGrid", | |
"n_levels": 16, | |
"n_features_per_level": 2, | |
"log2_hashmap_size": 19, | |
"base_resolution": 16, | |
"per_level_scale": 1.447269237440378, | |
} | |
) | |
mlp_network_config: dict = field( | |
default_factory=lambda: { | |
"otype": "VanillaMLP", | |
"activation": "ReLU", | |
"output_activation": "none", | |
"n_neurons": 64, | |
"n_hidden_layers": 1, | |
} | |
) | |
normal_type: Optional[ | |
str | |
] = "finite_difference" # in ['pred', 'finite_difference', 'finite_difference_laplacian'] | |
finite_difference_normal_eps: float = 0.01 | |
# automatically determine the threshold | |
isosurface_threshold: Union[float, str] = 25.0 | |
cfg: Config | |
def configure(self) -> None: | |
super().configure() | |
self.encoding = get_encoding( | |
self.cfg.n_input_dims, self.cfg.pos_encoding_config | |
) | |
self.density_network = get_mlp( | |
self.encoding.n_output_dims, 1, self.cfg.mlp_network_config | |
) | |
if self.cfg.n_feature_dims > 0: | |
self.feature_network = get_mlp( | |
self.encoding.n_output_dims, | |
self.cfg.n_feature_dims, | |
self.cfg.mlp_network_config, | |
) | |
if self.cfg.normal_type == "pred": | |
self.normal_network = get_mlp( | |
self.encoding.n_output_dims, 3, self.cfg.mlp_network_config | |
) | |
def get_activated_density( | |
self, points: Float[Tensor, "*N Di"], density: Float[Tensor, "*N 1"] | |
) -> Tuple[Float[Tensor, "*N 1"], Float[Tensor, "*N 1"]]: | |
density_bias: Union[float, Float[Tensor, "*N 1"]] | |
if self.cfg.density_bias == "blob_dreamfusion": | |
# pre-activation density bias | |
density_bias = ( | |
self.cfg.density_blob_scale | |
* torch.exp( | |
-0.5 * (points**2).sum(dim=-1) / self.cfg.density_blob_std**2 | |
)[..., None] | |
) | |
elif self.cfg.density_bias == "blob_magic3d": | |
# pre-activation density bias | |
density_bias = ( | |
self.cfg.density_blob_scale | |
* ( | |
1 | |
- torch.sqrt((points**2).sum(dim=-1)) / self.cfg.density_blob_std | |
)[..., None] | |
) | |
elif isinstance(self.cfg.density_bias, float): | |
density_bias = self.cfg.density_bias | |
else: | |
raise ValueError(f"Unknown density bias {self.cfg.density_bias}") | |
raw_density: Float[Tensor, "*N 1"] = density + density_bias | |
density = get_activation(self.cfg.density_activation)(raw_density) | |
return raw_density, density | |
def forward( | |
self, points: Float[Tensor, "*N Di"], output_normal: bool = False | |
) -> Dict[str, Float[Tensor, "..."]]: | |
grad_enabled = torch.is_grad_enabled() | |
if output_normal and self.cfg.normal_type == "analytic": | |
torch.set_grad_enabled(True) | |
points.requires_grad_(True) | |
points_unscaled = points # points in the original scale | |
points = contract_to_unisphere( | |
points, self.bbox, self.unbounded | |
) # points normalized to (0, 1) | |
enc = self.encoding(points.view(-1, self.cfg.n_input_dims)) | |
density = self.density_network(enc).view(*points.shape[:-1], 1) | |
raw_density, density = self.get_activated_density(points_unscaled, density) | |
output = { | |
"density": density, | |
} | |
if self.cfg.n_feature_dims > 0: | |
features = self.feature_network(enc).view( | |
*points.shape[:-1], self.cfg.n_feature_dims | |
) | |
output.update({"features": features}) | |
if output_normal: | |
if ( | |
self.cfg.normal_type == "finite_difference" | |
or self.cfg.normal_type == "finite_difference_laplacian" | |
): | |
# TODO: use raw density | |
eps = self.cfg.finite_difference_normal_eps | |
if self.cfg.normal_type == "finite_difference_laplacian": | |
offsets: Float[Tensor, "6 3"] = torch.as_tensor( | |
[ | |
[eps, 0.0, 0.0], | |
[-eps, 0.0, 0.0], | |
[0.0, eps, 0.0], | |
[0.0, -eps, 0.0], | |
[0.0, 0.0, eps], | |
[0.0, 0.0, -eps], | |
] | |
).to(points_unscaled) | |
points_offset: Float[Tensor, "... 6 3"] = ( | |
points_unscaled[..., None, :] + offsets | |
).clamp(-self.cfg.radius, self.cfg.radius) | |
density_offset: Float[Tensor, "... 6 1"] = self.forward_density( | |
points_offset | |
) | |
normal = ( | |
-0.5 | |
* (density_offset[..., 0::2, 0] - density_offset[..., 1::2, 0]) | |
/ eps | |
) | |
else: | |
offsets: Float[Tensor, "3 3"] = torch.as_tensor( | |
[[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]] | |
).to(points_unscaled) | |
points_offset: Float[Tensor, "... 3 3"] = ( | |
points_unscaled[..., None, :] + offsets | |
).clamp(-self.cfg.radius, self.cfg.radius) | |
density_offset: Float[Tensor, "... 3 1"] = self.forward_density( | |
points_offset | |
) | |
normal = -(density_offset[..., 0::1, 0] - density) / eps | |
normal = F.normalize(normal, dim=-1) | |
elif self.cfg.normal_type == "pred": | |
normal = self.normal_network(enc).view(*points.shape[:-1], 3) | |
normal = F.normalize(normal, dim=-1) | |
elif self.cfg.normal_type == "analytic": | |
normal = -torch.autograd.grad( | |
density, | |
points_unscaled, | |
grad_outputs=torch.ones_like(density), | |
create_graph=True, | |
)[0] | |
normal = F.normalize(normal, dim=-1) | |
if not grad_enabled: | |
normal = normal.detach() | |
else: | |
raise AttributeError(f"Unknown normal type {self.cfg.normal_type}") | |
output.update({"normal": normal, "shading_normal": normal}) | |
torch.set_grad_enabled(grad_enabled) | |
return output | |
def forward_density(self, points: Float[Tensor, "*N Di"]) -> Float[Tensor, "*N 1"]: | |
points_unscaled = points | |
points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) | |
density = self.density_network( | |
self.encoding(points.reshape(-1, self.cfg.n_input_dims)) | |
).reshape(*points.shape[:-1], 1) | |
_, density = self.get_activated_density(points_unscaled, density) | |
return density | |
def forward_field( | |
self, points: Float[Tensor, "*N Di"] | |
) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]: | |
if self.cfg.isosurface_deformable_grid: | |
threestudio.warn( | |
f"{self.__class__.__name__} does not support isosurface_deformable_grid. Ignoring." | |
) | |
density = self.forward_density(points) | |
return density, None | |
def forward_level( | |
self, field: Float[Tensor, "*N 1"], threshold: float | |
) -> Float[Tensor, "*N 1"]: | |
return -(field - threshold) | |
def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]: | |
out: Dict[str, Any] = {} | |
if self.cfg.n_feature_dims == 0: | |
return out | |
points_unscaled = points | |
points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded) | |
enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims)) | |
features = self.feature_network(enc).view( | |
*points.shape[:-1], self.cfg.n_feature_dims | |
) | |
out.update( | |
{ | |
"features": features, | |
} | |
) | |
return out | |
def create_from( | |
other: BaseGeometry, | |
cfg: Optional[Union[dict, DictConfig]] = None, | |
copy_net: bool = True, | |
**kwargs, | |
) -> "ImplicitVolume": | |
if isinstance(other, ImplicitVolume): | |
instance = ImplicitVolume(cfg, **kwargs) | |
instance.encoding.load_state_dict(other.encoding.state_dict()) | |
instance.density_network.load_state_dict(other.density_network.state_dict()) | |
if copy_net: | |
if ( | |
instance.cfg.n_feature_dims > 0 | |
and other.cfg.n_feature_dims == instance.cfg.n_feature_dims | |
): | |
instance.feature_network.load_state_dict( | |
other.feature_network.state_dict() | |
) | |
if ( | |
instance.cfg.normal_type == "pred" | |
and other.cfg.normal_type == "pred" | |
): | |
instance.normal_network.load_state_dict( | |
other.normal_network.state_dict() | |
) | |
return instance | |
else: | |
raise TypeError( | |
f"Cannot create {ImplicitVolume.__name__} from {other.__class__.__name__}" | |
) | |