File size: 6,040 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from dataclasses import dataclass

import torch
import torch.nn.functional as F

import threestudio
from threestudio.models.background.base import BaseBackground
from threestudio.models.geometry.base import BaseImplicitGeometry
from threestudio.models.materials.base import BaseMaterial
from threestudio.models.renderers.base import VolumeRenderer
from threestudio.utils.GAN.discriminator import NLayerDiscriminator, weights_init
from threestudio.utils.GAN.distribution import DiagonalGaussianDistribution
from threestudio.utils.GAN.mobilenet import MobileNetV3 as GlobalEncoder
from threestudio.utils.GAN.vae import Decoder as Generator
from threestudio.utils.GAN.vae import Encoder as LocalEncoder
from threestudio.utils.typing import *


@threestudio.register("gan-volume-renderer")
class GANVolumeRenderer(VolumeRenderer):
    @dataclass
    class Config(VolumeRenderer.Config):
        base_renderer_type: str = ""
        base_renderer: Optional[VolumeRenderer.Config] = None

    cfg: Config

    def configure(
        self,
        geometry: BaseImplicitGeometry,
        material: BaseMaterial,
        background: BaseBackground,
    ) -> None:
        self.base_renderer = threestudio.find(self.cfg.base_renderer_type)(
            self.cfg.base_renderer,
            geometry=geometry,
            material=material,
            background=background,
        )
        self.ch_mult = [1, 2, 4]
        self.generator = Generator(
            ch=64,
            out_ch=3,
            ch_mult=self.ch_mult,
            num_res_blocks=1,
            attn_resolutions=[],
            dropout=0.0,
            resamp_with_conv=True,
            in_channels=7,
            resolution=512,
            z_channels=4,
        )
        self.local_encoder = LocalEncoder(
            ch=32,
            out_ch=3,
            ch_mult=self.ch_mult,
            num_res_blocks=1,
            attn_resolutions=[],
            dropout=0.0,
            resamp_with_conv=True,
            in_channels=3,
            resolution=512,
            z_channels=4,
        )
        self.global_encoder = GlobalEncoder(n_class=64)
        self.discriminator = NLayerDiscriminator(
            input_nc=3, n_layers=3, use_actnorm=False, ndf=64
        ).apply(weights_init)

    def forward(
        self,
        rays_o: Float[Tensor, "B H W 3"],
        rays_d: Float[Tensor, "B H W 3"],
        light_positions: Float[Tensor, "B 3"],
        bg_color: Optional[Tensor] = None,
        gt_rgb: Float[Tensor, "B H W 3"] = None,
        multi_level_guidance: Bool = False,
        **kwargs
    ) -> Dict[str, Float[Tensor, "..."]]:
        B, H, W, _ = rays_o.shape
        if gt_rgb is not None and multi_level_guidance:
            generator_level = torch.randint(0, 3, (1,)).item()
            interval_x = torch.randint(0, 8, (1,)).item()
            interval_y = torch.randint(0, 8, (1,)).item()
            int_rays_o = rays_o[:, interval_y::8, interval_x::8]
            int_rays_d = rays_d[:, interval_y::8, interval_x::8]
            out = self.base_renderer(
                int_rays_o, int_rays_d, light_positions, bg_color, **kwargs
            )
            comp_int_rgb = out["comp_rgb"][..., :3]
            comp_gt_rgb = gt_rgb[:, interval_y::8, interval_x::8]
        else:
            generator_level = 0
        scale_ratio = 2 ** (len(self.ch_mult) - 1)
        rays_o = torch.nn.functional.interpolate(
            rays_o.permute(0, 3, 1, 2),
            (H // scale_ratio, W // scale_ratio),
            mode="bilinear",
        ).permute(0, 2, 3, 1)
        rays_d = torch.nn.functional.interpolate(
            rays_d.permute(0, 3, 1, 2),
            (H // scale_ratio, W // scale_ratio),
            mode="bilinear",
        ).permute(0, 2, 3, 1)

        out = self.base_renderer(rays_o, rays_d, light_positions, bg_color, **kwargs)
        comp_rgb = out["comp_rgb"][..., :3]
        latent = out["comp_rgb"][..., 3:]
        out["comp_lr_rgb"] = comp_rgb.clone()

        posterior = DiagonalGaussianDistribution(latent.permute(0, 3, 1, 2))
        if multi_level_guidance:
            z_map = posterior.sample()
        else:
            z_map = posterior.mode()
        lr_rgb = comp_rgb.permute(0, 3, 1, 2)

        if generator_level == 0:
            g_code_rgb = self.global_encoder(F.interpolate(lr_rgb, (224, 224)))
            comp_gan_rgb = self.generator(torch.cat([lr_rgb, z_map], dim=1), g_code_rgb)
        elif generator_level == 1:
            g_code_rgb = self.global_encoder(
                F.interpolate(gt_rgb.permute(0, 3, 1, 2), (224, 224))
            )
            comp_gan_rgb = self.generator(torch.cat([lr_rgb, z_map], dim=1), g_code_rgb)
        elif generator_level == 2:
            g_code_rgb = self.global_encoder(
                F.interpolate(gt_rgb.permute(0, 3, 1, 2), (224, 224))
            )
            l_code_rgb = self.local_encoder(gt_rgb.permute(0, 3, 1, 2))
            posterior = DiagonalGaussianDistribution(l_code_rgb)
            z_map = posterior.sample()
            comp_gan_rgb = self.generator(torch.cat([lr_rgb, z_map], dim=1), g_code_rgb)

        comp_rgb = F.interpolate(comp_rgb.permute(0, 3, 1, 2), (H, W), mode="bilinear")
        comp_gan_rgb = F.interpolate(comp_gan_rgb, (H, W), mode="bilinear")
        out.update(
            {
                "posterior": posterior,
                "comp_gan_rgb": comp_gan_rgb.permute(0, 2, 3, 1),
                "comp_rgb": comp_rgb.permute(0, 2, 3, 1),
                "generator_level": generator_level,
            }
        )

        if gt_rgb is not None and multi_level_guidance:
            out.update({"comp_int_rgb": comp_int_rgb, "comp_gt_rgb": comp_gt_rgb})
        return out

    def update_step(
        self, epoch: int, global_step: int, on_load_weights: bool = False
    ) -> None:
        self.base_renderer.update_step(epoch, global_step, on_load_weights)

    def train(self, mode=True):
        return self.base_renderer.train(mode)

    def eval(self):
        return self.base_renderer.eval()