File size: 16,851 Bytes
2fa4776
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
from dataclasses import dataclass, field

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

import threestudio
from threestudio.models.geometry.base import BaseImplicitGeometry, contract_to_unisphere
from threestudio.models.mesh import Mesh
from threestudio.models.networks import get_encoding, get_mlp
from threestudio.utils.misc import broadcast, get_rank
from threestudio.utils.typing import *


@threestudio.register("implicit-sdf")
class ImplicitSDF(BaseImplicitGeometry):
    @dataclass
    class Config(BaseImplicitGeometry.Config):
        n_input_dims: int = 3
        n_feature_dims: int = 3
        pos_encoding_config: dict = field(
            default_factory=lambda: {
                "otype": "HashGrid",
                "n_levels": 16,
                "n_features_per_level": 2,
                "log2_hashmap_size": 19,
                "base_resolution": 16,
                "per_level_scale": 1.447269237440378,
            }
        )
        mlp_network_config: dict = field(
            default_factory=lambda: {
                "otype": "VanillaMLP",
                "activation": "ReLU",
                "output_activation": "none",
                "n_neurons": 64,
                "n_hidden_layers": 1,
            }
        )
        normal_type: Optional[
            str
        ] = "finite_difference"  # in ['pred', 'finite_difference', 'finite_difference_laplacian']
        finite_difference_normal_eps: Union[
            float, str
        ] = 0.01  # in [float, "progressive"]
        shape_init: Optional[str] = None
        shape_init_params: Optional[Any] = None
        shape_init_mesh_up: str = "+z"
        shape_init_mesh_front: str = "+x"
        force_shape_init: bool = False
        sdf_bias: Union[float, str] = 0.0
        sdf_bias_params: Optional[Any] = None

        # no need to removal outlier for SDF
        isosurface_remove_outliers: bool = False

    cfg: Config

    def configure(self) -> None:
        super().configure()
        self.encoding = get_encoding(
            self.cfg.n_input_dims, self.cfg.pos_encoding_config
        )
        self.sdf_network = get_mlp(
            self.encoding.n_output_dims, 1, self.cfg.mlp_network_config
        )

        if self.cfg.n_feature_dims > 0:
            self.feature_network = get_mlp(
                self.encoding.n_output_dims,
                self.cfg.n_feature_dims,
                self.cfg.mlp_network_config,
            )

        if self.cfg.normal_type == "pred":
            self.normal_network = get_mlp(
                self.encoding.n_output_dims, 3, self.cfg.mlp_network_config
            )
        if self.cfg.isosurface_deformable_grid:
            assert (
                self.cfg.isosurface_method == "mt"
            ), "isosurface_deformable_grid only works with mt"
            self.deformation_network = get_mlp(
                self.encoding.n_output_dims, 3, self.cfg.mlp_network_config
            )

        self.finite_difference_normal_eps: Optional[float] = None

    def initialize_shape(self) -> None:
        if self.cfg.shape_init is None and not self.cfg.force_shape_init:
            return

        # do not initialize shape if weights are provided
        if self.cfg.weights is not None and not self.cfg.force_shape_init:
            return

        if self.cfg.sdf_bias != 0.0:
            threestudio.warn(
                "shape_init and sdf_bias are both specified, which may lead to unexpected results."
            )

        get_gt_sdf: Callable[[Float[Tensor, "N 3"]], Float[Tensor, "N 1"]]
        assert isinstance(self.cfg.shape_init, str)
        if self.cfg.shape_init == "ellipsoid":
            assert (
                isinstance(self.cfg.shape_init_params, Sized)
                and len(self.cfg.shape_init_params) == 3
            )
            size = torch.as_tensor(self.cfg.shape_init_params).to(self.device)

            def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]:
                return ((points_rand / size) ** 2).sum(
                    dim=-1, keepdim=True
                ).sqrt() - 1.0  # pseudo signed distance of an ellipsoid

            get_gt_sdf = func
        elif self.cfg.shape_init == "sphere":
            assert isinstance(self.cfg.shape_init_params, float)
            radius = self.cfg.shape_init_params

            def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]:
                return (points_rand**2).sum(dim=-1, keepdim=True).sqrt() - radius

            get_gt_sdf = func
        elif self.cfg.shape_init.startswith("mesh:"):
            assert isinstance(self.cfg.shape_init_params, float)
            mesh_path = self.cfg.shape_init[5:]
            if not os.path.exists(mesh_path):
                raise ValueError(f"Mesh file {mesh_path} does not exist.")

            import trimesh

            scene = trimesh.load(mesh_path)
            if isinstance(scene, trimesh.Trimesh):
                mesh = scene
            elif isinstance(scene, trimesh.scene.Scene):
                mesh = trimesh.Trimesh()
                for obj in scene.geometry.values():
                    mesh = trimesh.util.concatenate([mesh, obj])
            else:
                raise ValueError(f"Unknown mesh type at {mesh_path}.")

            # move to center
            centroid = mesh.vertices.mean(0)
            mesh.vertices = mesh.vertices - centroid

            # align to up-z and front-x
            dirs = ["+x", "+y", "+z", "-x", "-y", "-z"]
            dir2vec = {
                "+x": np.array([1, 0, 0]),
                "+y": np.array([0, 1, 0]),
                "+z": np.array([0, 0, 1]),
                "-x": np.array([-1, 0, 0]),
                "-y": np.array([0, -1, 0]),
                "-z": np.array([0, 0, -1]),
            }
            if (
                self.cfg.shape_init_mesh_up not in dirs
                or self.cfg.shape_init_mesh_front not in dirs
            ):
                raise ValueError(
                    f"shape_init_mesh_up and shape_init_mesh_front must be one of {dirs}."
                )
            if self.cfg.shape_init_mesh_up[1] == self.cfg.shape_init_mesh_front[1]:
                raise ValueError(
                    "shape_init_mesh_up and shape_init_mesh_front must be orthogonal."
                )
            z_, x_ = (
                dir2vec[self.cfg.shape_init_mesh_up],
                dir2vec[self.cfg.shape_init_mesh_front],
            )
            y_ = np.cross(z_, x_)
            std2mesh = np.stack([x_, y_, z_], axis=0).T
            mesh2std = np.linalg.inv(std2mesh)

            # scaling
            scale = np.abs(mesh.vertices).max()
            mesh.vertices = mesh.vertices / scale * self.cfg.shape_init_params
            mesh.vertices = np.dot(mesh2std, mesh.vertices.T).T

            from pysdf import SDF

            sdf = SDF(mesh.vertices, mesh.faces)

            def func(points_rand: Float[Tensor, "N 3"]) -> Float[Tensor, "N 1"]:
                # add a negative signed here
                # as in pysdf the inside of the shape has positive signed distance
                return torch.from_numpy(-sdf(points_rand.cpu().numpy())).to(
                    points_rand
                )[..., None]

            get_gt_sdf = func

        else:
            raise ValueError(
                f"Unknown shape initialization type: {self.cfg.shape_init}"
            )

        # Initialize SDF to a given shape when no weights are provided or force_shape_init is True
        optim = torch.optim.Adam(self.parameters(), lr=1e-3)
        from tqdm import tqdm

        for _ in tqdm(
            range(1000),
            desc=f"Initializing SDF to a(n) {self.cfg.shape_init}:",
            disable=get_rank() != 0,
        ):
            points_rand = (
                torch.rand((10000, 3), dtype=torch.float32).to(self.device) * 2.0 - 1.0
            )
            sdf_gt = get_gt_sdf(points_rand)
            sdf_pred = self.forward_sdf(points_rand)
            loss = F.mse_loss(sdf_pred, sdf_gt)
            optim.zero_grad()
            loss.backward()
            optim.step()

        # explicit broadcast to ensure param consistency across ranks
        for param in self.parameters():
            broadcast(param, src=0)

    def get_shifted_sdf(
        self, points: Float[Tensor, "*N Di"], sdf: Float[Tensor, "*N 1"]
    ) -> Float[Tensor, "*N 1"]:
        sdf_bias: Union[float, Float[Tensor, "*N 1"]]
        if self.cfg.sdf_bias == "ellipsoid":
            assert (
                isinstance(self.cfg.sdf_bias_params, Sized)
                and len(self.cfg.sdf_bias_params) == 3
            )
            size = torch.as_tensor(self.cfg.sdf_bias_params).to(points)
            sdf_bias = ((points / size) ** 2).sum(
                dim=-1, keepdim=True
            ).sqrt() - 1.0  # pseudo signed distance of an ellipsoid
        elif self.cfg.sdf_bias == "sphere":
            assert isinstance(self.cfg.sdf_bias_params, float)
            radius = self.cfg.sdf_bias_params
            sdf_bias = (points**2).sum(dim=-1, keepdim=True).sqrt() - radius
        elif isinstance(self.cfg.sdf_bias, float):
            sdf_bias = self.cfg.sdf_bias
        else:
            raise ValueError(f"Unknown sdf bias {self.cfg.sdf_bias}")
        return sdf + sdf_bias

    def forward(
        self, points: Float[Tensor, "*N Di"], output_normal: bool = False
    ) -> Dict[str, Float[Tensor, "..."]]:
        grad_enabled = torch.is_grad_enabled()

        if output_normal and self.cfg.normal_type == "analytic":
            torch.set_grad_enabled(True)
            points.requires_grad_(True)

        points_unscaled = points  # points in the original scale
        points = contract_to_unisphere(
            points, self.bbox, self.unbounded
        )  # points normalized to (0, 1)

        enc = self.encoding(points.view(-1, self.cfg.n_input_dims))
        sdf = self.sdf_network(enc).view(*points.shape[:-1], 1)
        sdf = self.get_shifted_sdf(points_unscaled, sdf)
        output = {"sdf": sdf}

        if self.cfg.n_feature_dims > 0:
            features = self.feature_network(enc).view(
                *points.shape[:-1], self.cfg.n_feature_dims
            )
            output.update({"features": features})

        if output_normal:
            if (
                self.cfg.normal_type == "finite_difference"
                or self.cfg.normal_type == "finite_difference_laplacian"
            ):
                assert self.finite_difference_normal_eps is not None
                eps: float = self.finite_difference_normal_eps
                if self.cfg.normal_type == "finite_difference_laplacian":
                    offsets: Float[Tensor, "6 3"] = torch.as_tensor(
                        [
                            [eps, 0.0, 0.0],
                            [-eps, 0.0, 0.0],
                            [0.0, eps, 0.0],
                            [0.0, -eps, 0.0],
                            [0.0, 0.0, eps],
                            [0.0, 0.0, -eps],
                        ]
                    ).to(points_unscaled)
                    points_offset: Float[Tensor, "... 6 3"] = (
                        points_unscaled[..., None, :] + offsets
                    ).clamp(-self.cfg.radius, self.cfg.radius)
                    sdf_offset: Float[Tensor, "... 6 1"] = self.forward_sdf(
                        points_offset
                    )
                    sdf_grad = (
                        0.5
                        * (sdf_offset[..., 0::2, 0] - sdf_offset[..., 1::2, 0])
                        / eps
                    )
                else:
                    offsets: Float[Tensor, "3 3"] = torch.as_tensor(
                        [[eps, 0.0, 0.0], [0.0, eps, 0.0], [0.0, 0.0, eps]]
                    ).to(points_unscaled)
                    points_offset: Float[Tensor, "... 3 3"] = (
                        points_unscaled[..., None, :] + offsets
                    ).clamp(-self.cfg.radius, self.cfg.radius)
                    sdf_offset: Float[Tensor, "... 3 1"] = self.forward_sdf(
                        points_offset
                    )
                    sdf_grad = (sdf_offset[..., 0::1, 0] - sdf) / eps
                normal = F.normalize(sdf_grad, dim=-1)
            elif self.cfg.normal_type == "pred":
                normal = self.normal_network(enc).view(*points.shape[:-1], 3)
                normal = F.normalize(normal, dim=-1)
                sdf_grad = normal
            elif self.cfg.normal_type == "analytic":
                sdf_grad = -torch.autograd.grad(
                    sdf,
                    points_unscaled,
                    grad_outputs=torch.ones_like(sdf),
                    create_graph=True,
                )[0]
                normal = F.normalize(sdf_grad, dim=-1)
                if not grad_enabled:
                    sdf_grad = sdf_grad.detach()
                    normal = normal.detach()
            else:
                raise AttributeError(f"Unknown normal type {self.cfg.normal_type}")
            output.update(
                {"normal": normal, "shading_normal": normal, "sdf_grad": sdf_grad}
            )
        return output

    def forward_sdf(self, points: Float[Tensor, "*N Di"]) -> Float[Tensor, "*N 1"]:
        points_unscaled = points
        points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded)

        sdf = self.sdf_network(
            self.encoding(points.reshape(-1, self.cfg.n_input_dims))
        ).reshape(*points.shape[:-1], 1)
        sdf = self.get_shifted_sdf(points_unscaled, sdf)
        return sdf

    def forward_field(
        self, points: Float[Tensor, "*N Di"]
    ) -> Tuple[Float[Tensor, "*N 1"], Optional[Float[Tensor, "*N 3"]]]:
        points_unscaled = points
        points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded)
        enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims))
        sdf = self.sdf_network(enc).reshape(*points.shape[:-1], 1)
        sdf = self.get_shifted_sdf(points_unscaled, sdf)
        deformation: Optional[Float[Tensor, "*N 3"]] = None
        if self.cfg.isosurface_deformable_grid:
            deformation = self.deformation_network(enc).reshape(*points.shape[:-1], 3)
        return sdf, deformation

    def forward_level(
        self, field: Float[Tensor, "*N 1"], threshold: float
    ) -> Float[Tensor, "*N 1"]:
        return field - threshold

    def export(self, points: Float[Tensor, "*N Di"], **kwargs) -> Dict[str, Any]:
        out: Dict[str, Any] = {}
        if self.cfg.n_feature_dims == 0:
            return out
        points_unscaled = points
        points = contract_to_unisphere(points_unscaled, self.bbox, self.unbounded)
        enc = self.encoding(points.reshape(-1, self.cfg.n_input_dims))
        features = self.feature_network(enc).view(
            *points.shape[:-1], self.cfg.n_feature_dims
        )
        out.update(
            {
                "features": features,
            }
        )
        return out

    def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
        if (
            self.cfg.normal_type == "finite_difference"
            or self.cfg.normal_type == "finite_difference_laplacian"
        ):
            if isinstance(self.cfg.finite_difference_normal_eps, float):
                self.finite_difference_normal_eps = (
                    self.cfg.finite_difference_normal_eps
                )
            elif self.cfg.finite_difference_normal_eps == "progressive":
                # progressive finite difference eps from Neuralangelo
                # https://arxiv.org/abs/2306.03092
                hg_conf: Any = self.cfg.pos_encoding_config
                assert (
                    hg_conf.otype == "ProgressiveBandHashGrid"
                ), "finite_difference_normal_eps=progressive only works with ProgressiveBandHashGrid"
                current_level = min(
                    hg_conf.start_level
                    + max(global_step - hg_conf.start_step, 0) // hg_conf.update_steps,
                    hg_conf.n_levels,
                )
                grid_res = hg_conf.base_resolution * hg_conf.per_level_scale ** (
                    current_level - 1
                )
                grid_size = 2 * self.cfg.radius / grid_res
                if grid_size != self.finite_difference_normal_eps:
                    threestudio.info(
                        f"Update finite_difference_normal_eps to {grid_size}"
                    )
                self.finite_difference_normal_eps = grid_size
            else:
                raise ValueError(
                    f"Unknown finite_difference_normal_eps={self.cfg.finite_difference_normal_eps}"
                )