import os # Ensure DeepFashion2 model is downloaded early MODEL_URL = "https://huggingface.co/Bingsu/adetailer/resolve/main/deepfashion2_yolov8s-seg.pt" MODEL_PATH = "deepfashion2_yolov8s-seg.pt" if not os.path.exists(MODEL_PATH): import urllib.request print("[INFO] Downloading DeepFashion2 YOLOv8 model...") urllib.request.urlretrieve(MODEL_URL, MODEL_PATH) print("[INFO] Model downloaded.") import traceback from datetime import datetime import torch, gc from PIL import Image import gradio as gr from inference import generate_with_lora from background_edit import run_background_removal_and_inpaint, run_clothing_inpaint # ─────────────── Helpers ─────────────── def _print_trace(): traceback.print_exc() def unload_models(): torch.cuda.empty_cache() gc.collect() def safe_generate_all_steps( image, prompt_1, neg_1, strength_1, guidance_1, prompt_2, neg_2, guidance_2, prompt_3, neg_3, guidance_3 ): try: if image is None: raise gr.Error("Please upload an image first.") # Step 1: Headshot Refinement print("[INFO] Step 1: Refining headshot...", flush=True) refined = generate_with_lora( image=image, prompt=prompt_1, negative_prompt=neg_1, strength=strength_1, guidance_scale=guidance_1, ) # Save intermediate result to disk os.makedirs("./outputs", exist_ok=True) ts = datetime.now().strftime("%Y%m%d_%H%M%S") path = f"./outputs/step1_result_{ts}.png" refined.save(path) # Step 2: Background Inpainting print("[INFO] Step 2: Inpainting background...", flush=True) unload_models() with_bg = run_background_removal_and_inpaint( image_path=path, prompt=prompt_2, negative_prompt=neg_2, guidance_scale=guidance_2 ) # Step 3: Clothing Inpainting print("[INFO] Step 3: Inpainting clothing...", flush=True) final, err = run_clothing_inpaint( with_bg, prompt_3, neg_3, guidance_3 ) if err: return refined, with_bg, None, err return refined, with_bg, final, "" except gr.Error as e: return None, None, None, f"🛑 {str(e)}" except Exception as e: _print_trace() return None, None, None, f"❌ Unexpected Error: {type(e).__name__}: {str(e)}" # ─────────────── Gradio UI ─────────────── with gr.Blocks() as demo: gr.Markdown("## 🧠 Full Headshot + Background + Clothing Generator (One Click)") with gr.Row(): input_image = gr.Image(type="pil", label="Upload Headshot") gr.Markdown("### Step 1: Headshot Refinement (LoRA)") with gr.Row(): prompt_1 = gr.Textbox(label="Headshot Prompt", value="a professional corporate headshot of a confident woman in her 30s with blow dried hair, natural smile, soft lighting, clean studio background, realistic photo, high detail, shallow depth of field") neg_1 = gr.Textbox(label="Headshot Negative Prompt", value="cartoon, anime, painting, illustration, low quality, overexposed, distorted face, exaggerated features, blurry background") with gr.Row(): strength_1 = gr.Slider(0.1, 1.0, value=0.2, step=0.05, label="Refinement Strength") guidance_1 = gr.Slider(1, 20, value=17, step=0.5, label="Guidance Scale (Headshot)") gr.Markdown("### Step 2: Background Inpainting (SDXL)") with gr.Row(): prompt_2 = gr.Textbox(label="Background Prompt", value="modern startup office, open-plan layout, natural daylight, glass walls, minimalistic decor, desks with computers, warm soft lighting, realistic environment") neg_2 = gr.Textbox(label="Background Negative Prompt", value="cluttered space, fantasy architecture, cartoon, low-res textures, empty background, distorted shapes, harsh shadowsh") with gr.Row(): guidance_2 = gr.Slider(1, 20, value=10, step=0.5, label="Guidance Scale (Background)") gr.Markdown("### Step 3: Clothing Replacement") with gr.Row(): prompt_3 = gr.Textbox(label="Clothing Prompt", value="tailored women's business suit, white blouse, blazer and pencil skirt, elegant corporate style, modern, professional lighting") neg_3 = gr.Textbox(label="Clothing Negative Prompt", value="casual clothes, hoodie, jeans, fantasy outfit, cartoon, distorted textures, glitch, unrealistic proportions") with gr.Row(): guidance_3 = gr.Slider(1, 20, value=17.0, step=0.5, label="Clothing Guidance Scale") go_btn = gr.Button("✨ Run Full Pipeline (All 3 Steps)") with gr.Row(): output_refined = gr.Image(type="pil", label="Step 1: Refined Headshot") output_bg = gr.Image(type="pil", label="Step 2: With New Background") output_final = gr.Image(type="pil", label="Step 3: Final with New Clothing") error_box = gr.Markdown(label="Error", value="", visible=True) go_btn.click( fn=safe_generate_all_steps, inputs=[ input_image, prompt_1, neg_1, strength_1, guidance_1, prompt_2, neg_2, guidance_2, prompt_3, neg_3, guidance_3 ], outputs=[output_refined, output_bg, output_final, error_box] ) demo.launch(debug=True)