Spaces:
Running
on
Zero
Running
on
Zero
import os | |
# ββ before you set the env var ββ | |
hf_home = "/data/.cache/huggingface" | |
yolo_cfg = "/data/ultralytics" | |
# create the folders (and any parents) if they donβt already exist | |
os.makedirs(hf_home, exist_ok=True) | |
os.makedirs(yolo_cfg, exist_ok=True) | |
# now point HF and YOLO at them | |
os.environ["HF_HOME"] = hf_home | |
os.environ["YOLO_CONFIG_DIR"] = yolo_cfg | |
import spaces | |
from ultralytics import YOLO | |
import numpy as np | |
import torch | |
from PIL import Image | |
import cv2 | |
from diffusers import StableDiffusionXLInpaintPipeline | |
from utils import pil_to_cv2, cv2_to_pil | |
import gradio as gr # β Needed for error handling | |
INPAINT_SIZE = 1024 | |
# Load clothing model | |
clothing_model = YOLO("deepfashion2_yolov8s-seg.pt") | |
# β Load models once | |
yolo = YOLO("yolov8x-seg.pt") | |
inpaint_pipe = StableDiffusionXLInpaintPipeline.from_pretrained( | |
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
use_auth_token=os.getenv("HF_TOKEN") | |
).to("cuda") | |
def run_background_removal_and_inpaint(image_path, prompt, negative_prompt, guidance_scale=10): | |
if not image_path or not os.path.isfile(image_path): | |
raise gr.Error("No valid image found. Please run Step 1 first.") | |
image = Image.open(image_path).convert("RGB") | |
img_cv = pil_to_cv2(image) | |
results = yolo(img_cv) | |
if not results or not results[0].masks or len(results[0].masks.data) == 0: | |
raise gr.Error("No subject detected in the image. Please upload a clearer photo.") | |
mask = results[0].masks.data[0].cpu().numpy() | |
binary = (mask > 0.5).astype(np.uint8) | |
background_mask = 1 - binary | |
kernel = np.ones((15, 15), np.uint8) | |
dilated = cv2.dilate(background_mask, kernel, iterations=1) | |
inpaint_mask = (dilated * 255).astype(np.uint8) | |
mask_pil = cv2_to_pil(inpaint_mask).resize((INPAINT_SIZE, INPAINT_SIZE)).convert("L") | |
img_pil = image.resize((INPAINT_SIZE, INPAINT_SIZE)).convert("RGB") | |
result = inpaint_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt or "", | |
image=img_pil, | |
mask_image=mask_pil, | |
guidance_scale=guidance_scale, | |
num_inference_steps=40 | |
).images[0] | |
return result | |
def run_clothing_inpaint(image, prompt, negative_prompt, guidance): | |
try: | |
print("[INFO] Step 3: Clothing segmentation and inpainting...", flush=True) | |
img_cv = np.array(image.convert("RGB"))[..., ::-1] # PIL β OpenCV BGR | |
h, w = img_cv.shape[:2] | |
# Segment clothing | |
results = clothing_model(img_cv) | |
masks = results[0].masks.data.cpu().numpy() | |
if len(masks) == 0: | |
raise gr.Error("No clothing detected. Try a different image.") | |
mask = masks[0] | |
resized_mask = cv2.resize(mask, (w, h), interpolation=cv2.INTER_NEAREST) | |
binary_mask = (resized_mask > 0.5).astype(np.uint8) * 255 | |
mask_pil = Image.fromarray(binary_mask).convert("L").resize((INPAINT_SIZE, INPAINT_SIZE)) | |
# Resize input image | |
resized_image = image.convert("RGB").resize((INPAINT_SIZE, INPAINT_SIZE)) | |
# Inpaint clothing | |
result = inpaint_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=resized_image, | |
mask_image=mask_pil, | |
guidance_scale=guidance, | |
num_inference_steps=50 | |
).images[0] | |
return result, "" | |
except gr.Error as e: | |
return None, f"π {str(e)}" | |
except Exception as e: | |
traceback.print_exc() | |
return None, f"β Unexpected Error: {type(e).__name__}: {str(e)}" | |