professional_head / background_edit.py
theoracle's picture
Fix step error handling and wire up error_box
10bd531
raw
history blame
2.06 kB
import os
# ── before you set the env var ──
hf_home = "/data/.cache/huggingface"
yolo_cfg = "/data/ultralytics"
# create the folders (and any parents) if they don’t already exist
os.makedirs(hf_home, exist_ok=True)
os.makedirs(yolo_cfg, exist_ok=True)
# now point HF and YOLO at them
os.environ["HF_HOME"] = hf_home
os.environ["YOLO_CONFIG_DIR"] = yolo_cfg
from ultralytics import YOLO
import numpy as np
import torch
from PIL import Image
import cv2
from diffusers import StableDiffusionXLInpaintPipeline
from utils import pil_to_cv2, cv2_to_pil
import gradio as gr # ✅ Needed for error handling
# ✅ Load models once
yolo = YOLO("yolov8x-seg.pt")
inpaint_pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
"diffusers/stable-diffusion-xl-1.0-inpainting-0.1",
torch_dtype=torch.float16,
use_safetensors=True,
use_auth_token=os.getenv("HF_TOKEN")
).to("cuda")
def run_background_removal_and_inpaint(image_path, prompt, negative_prompt):
if not image_path or not os.path.isfile(image_path):
raise gr.Error("No valid image found. Please run Step 1 first.")
image = Image.open(image_path).convert("RGB")
img_cv = pil_to_cv2(image)
results = yolo(img_cv)
if not results or not results[0].masks or len(results[0].masks.data) == 0:
raise gr.Error("No subject detected in the image. Please upload a clearer photo.")
mask = results[0].masks.data[0].cpu().numpy()
binary = (mask > 0.5).astype(np.uint8)
background_mask = 1 - binary
kernel = np.ones((15, 15), np.uint8)
dilated = cv2.dilate(background_mask, kernel, iterations=1)
inpaint_mask = (dilated * 255).astype(np.uint8)
mask_pil = cv2_to_pil(inpaint_mask).resize((1024, 1024)).convert("L")
img_pil = image.resize((1024, 1024)).convert("RGB")
result = inpaint_pipe(
prompt=prompt,
negative_prompt=negative_prompt or "",
image=img_pil,
mask_image=mask_pil,
guidance_scale=10,
num_inference_steps=40
).images[0]
return result