import lancedb import os import gradio as gr from sentence_transformers import SentenceTransformer from pathlib import Path from dotenv import load_dotenv import logging # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Load environment variables from the .env file load_dotenv() # Connect to the LanceDB database # Determine the working directory current_working_dir = Path(os.getcwd()) logger.info(f"Working directory: {current_working_dir}") # List contents of the current working directory current_dir_contents = os.listdir(current_working_dir) logger.info(f"Contents of the working directory: {current_dir_contents}") # Ensure the working directory contains 'gradio_app' if 'gradio_app' not in current_dir_contents: raise FileNotFoundError("The 'gradio_app' directory is missing from the working directory.") # List and log all contents of the gradio_app directory gradio_app_dir = current_working_dir / 'gradio_app' gradio_app_contents = os.listdir(gradio_app_dir) logger.info(f"Contents of 'gradio_app' directory: {gradio_app_contents}") db_path = current_working_dir / "gradio_app" / ".lancedb" logger.info(f"Database path: {db_path}") db = lancedb.connect(db_path) MODEL1_STRATEGY1 = "model1_fixed" MODEL2_STRATEGY1 = "model2_fixed" MODEL3_STRATEGY1 = "model3_fixed" VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) retriever = SentenceTransformer(os.getenv("EMB_MODEL")) def get_table_name(): emb_model = os.getenv("EMB_MODEL") print(emb_model) if emb_model == "sentence-transformers/all-MiniLM-L6-v2": return MODEL1_STRATEGY1 elif emb_model == "BAAI/bge-large-en-v1.5": return MODEL2_STRATEGY1 elif emb_model == "openai/text-embedding-ada-002": return MODEL3_STRATEGY1 else: raise ValueError(f"Unsupported embedding model: {emb_model}") def retrieve(query, k): table_name = get_table_name() TABLE = db.open_table(table_name) query_vec = retriever.encode(query) try: documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list() documents = [doc[TEXT_COLUMN] for doc in documents] return documents except Exception as e: raise gr.Error(str(e)) # if __name__ == "__main__": # res = retrieve("What is transformer?", 4) # print(res)