Spaces:
Sleeping
Sleeping
Backward | |
The last addition is to replace the typical loss.backward() in your training loop with π€ Accelerate's [~accelerate.Accelerator.backward]method: | |
for epoch in range(num_epochs): | |
for batch in train_dataloader: | |
outputs = model(**batch) | |
loss = outputs.loss | |
accelerator.backward(loss) | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
progress_bar.update(1) |