Spaces:
Sleeping
Sleeping
import lancedb | |
import os | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
from pathlib import Path | |
from dotenv import load_dotenv | |
import logging | |
# Set up logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
# Load environment variables from the .env file | |
load_dotenv() | |
# Determine the LanceDB path and log it | |
current_working_dir = Path(os.getcwd()) | |
db_path = current_working_dir / ".lancedb" | |
logger.info(f"Database path: {db_path}") | |
# List contents of the LanceDB directory | |
if db_path.exists(): | |
lancedb_contents = os.listdir(db_path) | |
logger.info(f"Contents of the LanceDB directory: {lancedb_contents}") | |
else: | |
logger.error(f"LanceDB directory does not exist at path: {db_path}") | |
db = lancedb.connect(db_path) | |
# List and log all tables in the database | |
table_names = db.table_names() | |
logger.info(f"Available LanceDB Tables: {table_names}") | |
model1_fixed_path = db_path / "model1_fixed.lance" | |
if model1_fixed_path.exists(): | |
model1_fixed_contents = os.listdir(model1_fixed_path) | |
logger.info(f"Contents of the model1_fixed.lance folder: {model1_fixed_contents}") | |
else: | |
logger.error(f"model1_fixed.lance directory does not exist at path: {model1_fixed_path}") | |
MODEL1_STRATEGY1 = "model1_fixed" | |
MODEL2_STRATEGY1 = "model2_fixed" | |
MODEL3_STRATEGY1 = "model3_fixed" | |
VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector") | |
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text") | |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32)) | |
retriever = SentenceTransformer(os.getenv("EMB_MODEL")) | |
def get_table_name(): | |
emb_model = os.getenv("EMB_MODEL") | |
if emb_model == "sentence-transformers/all-MiniLM-L6-v2": | |
return MODEL1_STRATEGY1 | |
elif emb_model == "BAAI/bge-large-en-v1.5": | |
return MODEL2_STRATEGY1 | |
elif emb_model == "openai/text-embedding-ada-002": | |
return MODEL3_STRATEGY1 | |
else: | |
raise ValueError(f"Unsupported embedding model: {emb_model}") | |
def retrieve(query, k): | |
table_name = get_table_name() | |
TABLE = db.open_table(table_name) | |
query_vec = retriever.encode(query) | |
try: | |
documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list() | |
documents = [doc[TEXT_COLUMN] for doc in documents] | |
return documents | |
except Exception as e: | |
raise gr.Error(str(e)) | |
if __name__ == "__main__": | |
res = retrieve("What is transformer?", 4) | |
print(res) |