Spaces:
Sleeping
Sleeping
File size: 2,436 Bytes
939262b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
isExpanded: false sections: local: tasks/idefics title: Image tasks with IDEFICS local: tasks/prompting title: LLM prompting guide title: Prompting title: Task Guides sections: local: fast_tokenizers title: Use fast tokenizers from 🤗 Tokenizers local: multilingual title: Run inference with multilingual models local: create_a_model title: Use model-specific APIs local: custom_models title: Share a custom model local: chat_templating title: Templates for chat models local: trainer title: Trainer local: sagemaker title: Run training on Amazon SageMaker local: serialization title: Export to ONNX local: tflite title: Export to TFLite local: torchscript title: Export to TorchScript local: benchmarks title: Benchmarks local: notebooks title: Notebooks with examples local: community title: Community resources local: troubleshooting title: Troubleshoot local: gguf title: Interoperability with GGUF files title: Developer guides sections: local: quantization/overview title: Getting started local: quantization/bitsandbytes title: bitsandbytes local: quantization/gptq title: GPTQ local: quantization/awq title: AWQ local: quantization/aqlm title: AQLM local: quantization/quanto title: Quanto local: quantization/eetq title: EETQ local: quantization/hqq title: HQQ local: quantization/optimum title: Optimum local: quantization/contribute title: Contribute new quantization method title: Quantization Methods sections: local: performance title: Overview local: llm_optims title: LLM inference optimization sections: local: perf_train_gpu_one title: Methods and tools for efficient training on a single GPU local: perf_train_gpu_many title: Multiple GPUs and parallelism local: fsdp title: Fully Sharded Data Parallel local: deepspeed title: DeepSpeed local: perf_train_cpu title: Efficient training on CPU local: perf_train_cpu_many title: Distributed CPU training local: perf_train_tpu_tf title: Training on TPU with TensorFlow local: perf_train_special title: PyTorch training on Apple silicon local: perf_hardware title: Custom hardware for training local: hpo_train title: Hyperparameter Search using Trainer API title: Efficient training techniques sections: local: perf_infer_cpu title: CPU inference local: perf_infer_gpu_one title: GPU inference title: Optimizing inference |