File size: 1,232 Bytes
b7f4e8c
 
 
 
 
285b311
b7f4e8c
c1d292c
 
 
9751345
b7f4e8c
 
 
 
 
 
9751345
 
 
 
 
 
 
 
 
 
b7f4e8c
 
9751345
 
b7f4e8c
 
 
 
 
 
 
 
9751345
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import lancedb
import os
import gradio as gr
from sentence_transformers import SentenceTransformer

db = lancedb.connect("./.lancedb")

MODEL1_STRATEGY1 = "model1_fixed"
MODEL2_STRATEGY1 = "model2_fixed"
MODEL3_STRATEGY1 = "model3_fixed"

VECTOR_COLUMN = os.getenv("VECTOR_COLUMN", "vector")
TEXT_COLUMN = os.getenv("TEXT_COLUMN", "text")
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 32))

retriever = SentenceTransformer(os.getenv("EMB_MODEL"))

def get_table_name():
    emb_model = os.getenv("EMB_MODEL")
    if emb_model == "sentence-transformers/all-MiniLM-L6-v2":
        return MODEL1_STRATEGY1
    elif emb_model == "BAAI/bge-large-en-v1.5":
        return MODEL2_STRATEGY1
    elif emb_model == "openai/text-embedding-ada-002":
        return MODEL3_STRATEGY1
    else:
        raise ValueError(f"Unsupported embedding model: {emb_model}")

def retrieve(query, k):
    table_name = get_table_name()
    TABLE = db.open_table(table_name)
    query_vec = retriever.encode(query)
    try:
        documents = TABLE.search(query_vec, vector_column_name=VECTOR_COLUMN).limit(k).to_list()
        documents = [doc[TEXT_COLUMN] for doc in documents]

        return documents

    except Exception as e:
        raise gr.Error(str(e))