Spaces:
Sleeping
Sleeping
Upload 13 files
Browse files- .gitattributes +1 -0
- Dockerfile +11 -0
- README.md +9 -11
- chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/data_level0.bin +3 -0
- chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/header.bin +3 -0
- chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/index_metadata.pickle +3 -0
- chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/length.bin +3 -0
- chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/link_lists.bin +3 -0
- chroma/chroma.sqlite3 +3 -0
- databaseCreator.py +151 -0
- encodingGen.py +42 -0
- main.py +232 -0
- requirements.txt +12 -0
- templates/index.html +1 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
chroma/chroma.sqlite3 filter=lfs diff=lfs merge=lfs -text
|
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["python", "main.py"]
|
README.md
CHANGED
@@ -1,11 +1,9 @@
|
|
1 |
-
---
|
2 |
-
title: Narayangpt
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk: docker
|
7 |
-
pinned: false
|
8 |
-
license:
|
9 |
-
---
|
10 |
-
|
11 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: Narayangpt
|
3 |
+
emoji: 😻
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: green
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
license: cc-by-3.0
|
9 |
+
---
|
|
|
|
chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/data_level0.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:998e0cca15fc892538d911e028c1661336ba6c465037bba4619908939edcd98b
|
3 |
+
size 29652000
|
chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/header.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee810497fc5b8c99f0b6ffea36b49f5aaa802fb1fdd969845acc766e4cc33727
|
3 |
+
size 100
|
chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/index_metadata.pickle
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bb2921a6158c0c3d90cae154d9915b3029b3ba1cea6b2d2ab909c58579f63ca
|
3 |
+
size 466769
|
chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/length.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:869697aa4f1bec42bd2dd030b8f950ec956cfc77ff973e28a600915f446b1a5d
|
3 |
+
size 28000
|
chroma/468d1e28-05e8-41cd-a9e6-27b3066ef48a/link_lists.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f0b0384bec817cb17e10361b7a9f530011d5d25a83b9b56a16290ce9b1315b9d
|
3 |
+
size 62408
|
chroma/chroma.sqlite3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:460fccfb79271f6ad2c8d8906810f61f495ff33fd0f9ae5a5827870747aab6f2
|
3 |
+
size 124534784
|
databaseCreator.py
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
5 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
+
from langchain.schema.document import Document
|
7 |
+
from langchain_community.vectorstores import Chroma
|
8 |
+
from langchain_community.embeddings.bedrock import BedrockEmbeddings
|
9 |
+
import json
|
10 |
+
import requests
|
11 |
+
from chromadb import Documents, EmbeddingFunction, Embeddings
|
12 |
+
|
13 |
+
CHROMA_PATH = "chroma"
|
14 |
+
DATA_PATH = "pdfs"
|
15 |
+
|
16 |
+
|
17 |
+
class MyEmbeddingFunction(EmbeddingFunction):
|
18 |
+
|
19 |
+
def embed_documents(self, input: Documents) -> Embeddings:
|
20 |
+
for i in range(5):
|
21 |
+
try:
|
22 |
+
embeddings = []
|
23 |
+
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
|
24 |
+
|
25 |
+
payload = json.dumps({
|
26 |
+
"inputs": input
|
27 |
+
})
|
28 |
+
headers = {
|
29 |
+
'Accept': 'application/json, text/plain, */*',
|
30 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
31 |
+
'Connection': 'keep-alive',
|
32 |
+
'Content-Type': 'application/json',
|
33 |
+
'Origin': 'https://deepinfra.com',
|
34 |
+
'Referer': 'https://deepinfra.com/',
|
35 |
+
'Sec-Fetch-Dest': 'empty',
|
36 |
+
'Sec-Fetch-Mode': 'cors',
|
37 |
+
'Sec-Fetch-Site': 'same-site',
|
38 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
39 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
40 |
+
'sec-ch-ua-mobile': '?0',
|
41 |
+
'sec-ch-ua-platform': '"Windows"'
|
42 |
+
}
|
43 |
+
|
44 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
45 |
+
return response.json()["embeddings"]
|
46 |
+
except:
|
47 |
+
pass
|
48 |
+
|
49 |
+
|
50 |
+
def main():
|
51 |
+
|
52 |
+
# Check if the database should be cleared (using the --clear flag).
|
53 |
+
parser = argparse.ArgumentParser()
|
54 |
+
parser.add_argument("--reset", action="store_true", help="Reset the database.")
|
55 |
+
args = parser.parse_args()
|
56 |
+
if args.reset:
|
57 |
+
print("✨ Clearing Database")
|
58 |
+
clear_database()
|
59 |
+
|
60 |
+
# Create (or update) the data store.
|
61 |
+
documents = load_documents()
|
62 |
+
chunks = split_documents(documents)
|
63 |
+
add_to_chroma(chunks)
|
64 |
+
|
65 |
+
|
66 |
+
def load_documents():
|
67 |
+
print("📚 Loading Documents")
|
68 |
+
document_loader = PyPDFDirectoryLoader(DATA_PATH)
|
69 |
+
return document_loader.load()
|
70 |
+
|
71 |
+
|
72 |
+
def split_documents(documents: list[Document]):
|
73 |
+
print("🔪 Splitting Documents")
|
74 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
75 |
+
chunk_size=4000,
|
76 |
+
chunk_overlap=100,
|
77 |
+
length_function=len,
|
78 |
+
is_separator_regex=True
|
79 |
+
)
|
80 |
+
return text_splitter.split_documents(documents)
|
81 |
+
|
82 |
+
|
83 |
+
def add_to_chroma(chunks: list[Document]):
|
84 |
+
print("🔗 Adding to Chroma")
|
85 |
+
# Load the existing database.
|
86 |
+
custom_embeddings = MyEmbeddingFunction()
|
87 |
+
db = Chroma(
|
88 |
+
persist_directory=CHROMA_PATH, embedding_function=custom_embeddings
|
89 |
+
)
|
90 |
+
|
91 |
+
# Calculate Page IDs.
|
92 |
+
chunks_with_ids = calculate_chunk_ids(chunks)
|
93 |
+
|
94 |
+
# Add or Update the documents.
|
95 |
+
existing_items = db.get(include=[]) # IDs are always included by default
|
96 |
+
existing_ids = set(existing_items["ids"])
|
97 |
+
print(f"Number of existing documents in DB: {len(existing_ids)}")
|
98 |
+
|
99 |
+
# Only add documents that don't exist in the DB.
|
100 |
+
new_chunks = []
|
101 |
+
for chunk in chunks_with_ids:
|
102 |
+
if chunk.metadata["id"] not in existing_ids:
|
103 |
+
new_chunks.append(chunk)
|
104 |
+
|
105 |
+
if len(new_chunks):
|
106 |
+
print(f"👉 Adding new documents: {len(new_chunks)}")
|
107 |
+
new_chunk_ids = [chunk.metadata["id"] for chunk in new_chunks]
|
108 |
+
for i in range(0, len(new_chunks), 100):
|
109 |
+
try:
|
110 |
+
db.add_documents(new_chunks[i:i+100], ids=new_chunk_ids[i:i+100])
|
111 |
+
db.persist()
|
112 |
+
print(f"Added {i+100} documents")
|
113 |
+
except:
|
114 |
+
pass
|
115 |
+
else:
|
116 |
+
print("✅ No new documents to add")
|
117 |
+
|
118 |
+
|
119 |
+
def calculate_chunk_ids(chunks):
|
120 |
+
|
121 |
+
last_page_id = None
|
122 |
+
current_chunk_index = 0
|
123 |
+
|
124 |
+
for chunk in chunks:
|
125 |
+
source = chunk.metadata.get("source")
|
126 |
+
page = chunk.metadata.get("page")
|
127 |
+
current_page_id = f"{source}:{page}"
|
128 |
+
|
129 |
+
# If the page ID is the same as the last one, increment the index.
|
130 |
+
if current_page_id == last_page_id:
|
131 |
+
current_chunk_index += 1
|
132 |
+
else:
|
133 |
+
current_chunk_index = 0
|
134 |
+
|
135 |
+
# Calculate the chunk ID.
|
136 |
+
chunk_id = f"{current_page_id}:{current_chunk_index}"
|
137 |
+
last_page_id = current_page_id
|
138 |
+
|
139 |
+
# Add it to the page meta-data.
|
140 |
+
chunk.metadata["id"] = chunk_id
|
141 |
+
|
142 |
+
return chunks
|
143 |
+
|
144 |
+
|
145 |
+
def clear_database():
|
146 |
+
if os.path.exists(CHROMA_PATH):
|
147 |
+
shutil.rmtree(CHROMA_PATH)
|
148 |
+
|
149 |
+
|
150 |
+
if __name__ == "__main__":
|
151 |
+
main()
|
encodingGen.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
+
|
4 |
+
with open("embeddingData.json", "r") as f:
|
5 |
+
data = json.loads(f.read())
|
6 |
+
|
7 |
+
for i in range(0,len(data),10):
|
8 |
+
newData = []
|
9 |
+
for j in range(i,i+10):
|
10 |
+
try:
|
11 |
+
newData.append(data[j]["text"])
|
12 |
+
except:
|
13 |
+
pass
|
14 |
+
|
15 |
+
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
|
16 |
+
|
17 |
+
payload = json.dumps({
|
18 |
+
"inputs": newData
|
19 |
+
})
|
20 |
+
headers = {
|
21 |
+
'Accept': 'application/json, text/plain, */*',
|
22 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
23 |
+
'Connection': 'keep-alive',
|
24 |
+
'Content-Type': 'application/json',
|
25 |
+
'Origin': 'https://deepinfra.com',
|
26 |
+
'Referer': 'https://deepinfra.com/',
|
27 |
+
'Sec-Fetch-Dest': 'empty',
|
28 |
+
'Sec-Fetch-Mode': 'cors',
|
29 |
+
'Sec-Fetch-Site': 'same-site',
|
30 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
31 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
32 |
+
'sec-ch-ua-mobile': '?0',
|
33 |
+
'sec-ch-ua-platform': '"Windows"'
|
34 |
+
}
|
35 |
+
|
36 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
37 |
+
for j in range(len(response.json()["embeddings"])):
|
38 |
+
data[i+j]["embedding"] = response.json()["embeddings"][j]
|
39 |
+
print(data[i+j]["text"])
|
40 |
+
|
41 |
+
with open("embeddingData.json", "w") as f:
|
42 |
+
f.write(json.dumps(data, indent=4))
|
main.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, request, jsonify, render_template, Response
|
2 |
+
import os
|
3 |
+
import requests
|
4 |
+
import json
|
5 |
+
from scipy import spatial
|
6 |
+
from flask_cors import CORS
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
+
from langchain_chroma import Chroma
|
10 |
+
from chromadb import Documents, EmbeddingFunction, Embeddings
|
11 |
+
|
12 |
+
|
13 |
+
app = Flask(__name__)
|
14 |
+
CORS(app)
|
15 |
+
|
16 |
+
|
17 |
+
class MyEmbeddingFunction(EmbeddingFunction):
|
18 |
+
|
19 |
+
def embed_documents(self, input: Documents) -> Embeddings:
|
20 |
+
for i in range(5):
|
21 |
+
try:
|
22 |
+
embeddings = []
|
23 |
+
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
|
24 |
+
|
25 |
+
payload = json.dumps({
|
26 |
+
"inputs": input
|
27 |
+
})
|
28 |
+
headers = {
|
29 |
+
'Accept': 'application/json, text/plain, */*',
|
30 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
31 |
+
'Connection': 'keep-alive',
|
32 |
+
'Content-Type': 'application/json',
|
33 |
+
'Origin': 'https://deepinfra.com',
|
34 |
+
'Referer': 'https://deepinfra.com/',
|
35 |
+
'Sec-Fetch-Dest': 'empty',
|
36 |
+
'Sec-Fetch-Mode': 'cors',
|
37 |
+
'Sec-Fetch-Site': 'same-site',
|
38 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
39 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
40 |
+
'sec-ch-ua-mobile': '?0',
|
41 |
+
'sec-ch-ua-platform': '"Windows"'
|
42 |
+
}
|
43 |
+
|
44 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
45 |
+
return response.json()["embeddings"]
|
46 |
+
except:
|
47 |
+
pass
|
48 |
+
|
49 |
+
def embed_query(self, input: Documents) -> Embeddings:
|
50 |
+
print(input)
|
51 |
+
for i in range(5):
|
52 |
+
try:
|
53 |
+
embeddings = []
|
54 |
+
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
|
55 |
+
|
56 |
+
payload = json.dumps({
|
57 |
+
"inputs": [input]
|
58 |
+
})
|
59 |
+
headers = {
|
60 |
+
'Accept': 'application/json, text/plain, */*',
|
61 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
62 |
+
'Connection': 'keep-alive',
|
63 |
+
'Content-Type': 'application/json',
|
64 |
+
'Origin': 'https://deepinfra.com',
|
65 |
+
'Referer': 'https://deepinfra.com/',
|
66 |
+
'Sec-Fetch-Dest': 'empty',
|
67 |
+
'Sec-Fetch-Mode': 'cors',
|
68 |
+
'Sec-Fetch-Site': 'same-site',
|
69 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
70 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
71 |
+
'sec-ch-ua-mobile': '?0',
|
72 |
+
'sec-ch-ua-platform': '"Windows"'
|
73 |
+
}
|
74 |
+
|
75 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
76 |
+
return response.json()["embeddings"][0]
|
77 |
+
except:
|
78 |
+
pass
|
79 |
+
|
80 |
+
CHROMA_PATH = "chroma"
|
81 |
+
custom_embeddings = MyEmbeddingFunction()
|
82 |
+
db = Chroma(
|
83 |
+
persist_directory=CHROMA_PATH, embedding_function=custom_embeddings
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
def embeddingGen(query):
|
88 |
+
url = "https://api.deepinfra.com/v1/inference/BAAI/bge-large-en-v1.5"
|
89 |
+
|
90 |
+
payload = json.dumps({
|
91 |
+
"inputs": [query]
|
92 |
+
})
|
93 |
+
headers = {
|
94 |
+
'Accept': 'application/json, text/plain, */*',
|
95 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
96 |
+
'Connection': 'keep-alive',
|
97 |
+
'Content-Type': 'application/json',
|
98 |
+
'Origin': 'https://deepinfra.com',
|
99 |
+
'Referer': 'https://deepinfra.com/',
|
100 |
+
'Sec-Fetch-Dest': 'empty',
|
101 |
+
'Sec-Fetch-Mode': 'cors',
|
102 |
+
'Sec-Fetch-Site': 'same-site',
|
103 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
104 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
105 |
+
'sec-ch-ua-mobile': '?0',
|
106 |
+
'sec-ch-ua-platform': '"Windows"'
|
107 |
+
}
|
108 |
+
|
109 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
110 |
+
return response.json()
|
111 |
+
|
112 |
+
|
113 |
+
def strings_ranked_by_relatedness(query, df, top_n=5):
|
114 |
+
def relatedness_fn(x, y):
|
115 |
+
x_norm = np.linalg.norm(x)
|
116 |
+
y_norm = np.linalg.norm(y)
|
117 |
+
return np.dot(x, y) / (x_norm * y_norm)
|
118 |
+
|
119 |
+
query_embedding_response = embeddingGen(query)
|
120 |
+
query_embedding = query_embedding_response["embeddings"][0]
|
121 |
+
strings_and_relatednesses = [
|
122 |
+
(row["text"], relatedness_fn(query_embedding, row["embedding"])) for row in df
|
123 |
+
]
|
124 |
+
strings_and_relatednesses.sort(key=lambda x: x[1], reverse=True)
|
125 |
+
strings, relatednesses = zip(*strings_and_relatednesses)
|
126 |
+
return strings[:top_n], relatednesses[:top_n]
|
127 |
+
|
128 |
+
|
129 |
+
@app.route("/api/gpt", methods=["POST"])
|
130 |
+
def gptRes():
|
131 |
+
data = request.get_json()
|
132 |
+
messages = data["messages"]
|
133 |
+
def inference():
|
134 |
+
url = "https://api.deepinfra.com/v1/openai/chat/completions"
|
135 |
+
|
136 |
+
payload = json.dumps({
|
137 |
+
"model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
138 |
+
"messages": messages,
|
139 |
+
"stream": True,
|
140 |
+
"max_tokens": 1024,
|
141 |
+
})
|
142 |
+
headers = {
|
143 |
+
'Accept-Language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
144 |
+
'Connection': 'keep-alive',
|
145 |
+
'Content-Type': 'application/json',
|
146 |
+
'Origin': 'https://deepinfra.com',
|
147 |
+
'Referer': 'https://deepinfra.com/',
|
148 |
+
'Sec-Fetch-Dest': 'empty',
|
149 |
+
'Sec-Fetch-Mode': 'cors',
|
150 |
+
'Sec-Fetch-Site': 'same-site',
|
151 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
152 |
+
'X-Deepinfra-Source': 'web-page',
|
153 |
+
'accept': 'text/event-stream',
|
154 |
+
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
155 |
+
'sec-ch-ua-mobile': '?0',
|
156 |
+
'sec-ch-ua-platform': '"Windows"'
|
157 |
+
}
|
158 |
+
|
159 |
+
response = requests.request("POST", url, headers=headers, data=payload, stream=True)
|
160 |
+
|
161 |
+
for line in response.iter_lines(decode_unicode=True):
|
162 |
+
if line:
|
163 |
+
# try:
|
164 |
+
# line = line.split("data:")[1]
|
165 |
+
# line = json.loads(line)
|
166 |
+
# yield line["choices"][0]["delta"]["content"]
|
167 |
+
# except:
|
168 |
+
# yield ""
|
169 |
+
yield line
|
170 |
+
|
171 |
+
return Response(inference(), content_type='text/event-stream')
|
172 |
+
|
173 |
+
|
174 |
+
@app.route("/", methods=["GET"])
|
175 |
+
def index():
|
176 |
+
return render_template("index.html")
|
177 |
+
|
178 |
+
|
179 |
+
@app.route("/api/getAPI", methods=["POST"])
|
180 |
+
def getAPI():
|
181 |
+
return jsonify({"API": random.choice(apiKeys)})
|
182 |
+
|
183 |
+
|
184 |
+
@app.route("/api/getContext", methods=["POST"])
|
185 |
+
def getContext():
|
186 |
+
global db
|
187 |
+
question = request.form["question"]
|
188 |
+
results = db.similarity_search_with_score(question, k=5)
|
189 |
+
context = "\n\n---\n\n".join([doc.page_content for doc, _score in results])
|
190 |
+
sources = [doc.metadata.get("id", None) for doc, _score in results]
|
191 |
+
return jsonify({"context": context, "sources": sources})
|
192 |
+
|
193 |
+
|
194 |
+
@app.route("/api/audioGenerate", methods=["POST"])
|
195 |
+
def audioGenerate():
|
196 |
+
answer = request.form["answer"]
|
197 |
+
audio = []
|
198 |
+
for i in answer.split("\n"):
|
199 |
+
url = "https://deepgram.com/api/ttsAudioGeneration"
|
200 |
+
|
201 |
+
payload = json.dumps({
|
202 |
+
"text": i,
|
203 |
+
"model": "aura-asteria-en",
|
204 |
+
"demoType": "landing-page",
|
205 |
+
"params": "tag=landingpage-product-texttospeech"
|
206 |
+
})
|
207 |
+
headers = {
|
208 |
+
'accept': '*/*',
|
209 |
+
'accept-language': 'en-US,en;q=0.9,gu;q=0.8,ru;q=0.7,hi;q=0.6',
|
210 |
+
'content-type': 'application/json',
|
211 |
+
'origin': 'https://deepgram.com',
|
212 |
+
'priority': 'u=1, i',
|
213 |
+
'referer': 'https://deepgram.com/',
|
214 |
+
'sec-ch-ua': '"Not/A)Brand";v="8", "Chromium";v="126", "Google Chrome";v="126"',
|
215 |
+
'sec-ch-ua-mobile': '?0',
|
216 |
+
'sec-ch-ua-platform': '"Windows"',
|
217 |
+
'sec-fetch-dest': 'empty',
|
218 |
+
'sec-fetch-mode': 'cors',
|
219 |
+
'sec-fetch-site': 'same-origin',
|
220 |
+
'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36'
|
221 |
+
}
|
222 |
+
|
223 |
+
response = requests.request("POST", url, headers=headers, data=payload)
|
224 |
+
audio.append(response.json()["data"])
|
225 |
+
return jsonify({"audio": audio})
|
226 |
+
|
227 |
+
|
228 |
+
if __name__ == "__main__":
|
229 |
+
# app.run(debug=True)
|
230 |
+
from waitress import serve
|
231 |
+
|
232 |
+
serve(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
scipy
|
3 |
+
requests
|
4 |
+
Flask-Cors
|
5 |
+
pypdf
|
6 |
+
langchain
|
7 |
+
chromadb
|
8 |
+
pytest
|
9 |
+
langchain-community
|
10 |
+
langchain_chroma
|
11 |
+
waitress
|
12 |
+
uvicorn
|
templates/index.html
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
<!doctype html><html lang="en"><head><meta charset="utf-8"><link rel="icon" href="/images/logo.png"><meta name="viewport" content="width=device-width,initial-scale=1"><meta name="theme-color" content="#000000"><meta name="description" content="Web site created using create-react-app"><link rel="apple-touch-icon" href="/logo192.png"><link rel="manifest" href="/manifest.json"><title>NarayanGPT</title><script defer="defer" src="/static/js/main.99ba6a2a.js"></script><link href="/static/css/main.3346b154.css" rel="stylesheet"></head><body><noscript>You need to enable JavaScript to run this app.</noscript><div id="root"></div></body></html>
|