Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pickle | |
import random | |
import numpy as np | |
with open('models.pickle', 'rb')as f: | |
models = pickle.load(f) | |
LORA_TOKEN = ''#'<|>LORA_TOKEN<|>' | |
# WEIGHT_TOKEN = '<|>WEIGHT_TOKEN<|>' | |
NOT_SPLIT_TOKEN = '<|>NOT_SPLIT_TOKEN<|>' | |
def sample_next(ctx:str,model,k): | |
ctx = ', '.join(ctx.split(', ')[-k:]) | |
if model.get(ctx) is None: | |
return " " | |
possible_Chars = list(model[ctx].keys()) | |
possible_values = list(model[ctx].values()) | |
# print(possible_Chars) | |
# print(possible_values) | |
return np.random.choice(possible_Chars,p=possible_values) | |
def generateText(model, minLen=100, size=5): | |
keys = list(model.keys()) | |
starting_sent = random.choice(keys) | |
k = len(random.choice(keys).split(', ')) | |
sentence = starting_sent | |
ctx = ', '.join(starting_sent.split(', ')[-k:]) | |
while True: | |
next_prediction = sample_next(ctx,model,k) | |
sentence += f", {next_prediction}" | |
ctx = ', '.join(sentence.split(', ')[-k:]) | |
# if sentence.count('\n')>size: break | |
if '\n' in sentence: break | |
sentence = sentence.replace(NOT_SPLIT_TOKEN, ', ') | |
# sentence = re.sub(WEIGHT_TOKEN.replace('|', '\|'), lambda match: f":{random.randint(0,2)}.{random.randint(0,9)}", sentence) | |
# sentence = sentence.replace(":0.0", ':0.1') | |
# return sentence | |
prompt = sentence.split('\n')[0] | |
if len(prompt)<minLen: | |
prompt = generateText(model, minLen, size=1)[0] | |
size = size-1 | |
if size == 0: return [prompt] | |
output = [] | |
for i in range(size+1): | |
prompt = generateText(model, minLen, size=1)[0] | |
output.append(prompt) | |
return output | |
def sentence_builder(quantity, minLen, Type, negative): | |
if Type == "NSFW": idx=1 | |
elif Type == "SFW": idx=2 | |
else: idx=0 | |
model = models[idx] | |
output = "" | |
for i in range(quantity): | |
prompt = generateText(model[0], minLen=minLen, size=1)[0] | |
output+=f"PROMPT: {prompt}\n\n" | |
if negative: | |
negative_prompt = generateText(model[1], minLen=minLen, size=5)[0] | |
output+=f"NEGATIVE PROMPT: {negative_prompt}\n" | |
output+="----------------------------------------------------------------" | |
output+="\n\n\n" | |
return output[:-3] | |
ui = gr.Interface( | |
sentence_builder, | |
[ | |
gr.Slider(1, 10, value=4, label="Count", info="Choose between 1 and 10", step=1), | |
gr.Slider(100, 1000, value=300, label="minLen", info="Choose between 100 and 1000", step=50), | |
gr.Radio(["NSFW", "SFW", "BOTH"], label="TYPE", info="NSFW stands for NOT SAFE FOR WORK, so choose any one you want?"), | |
gr.Checkbox(label="negitive Prompt", info="Do you want to generate negative prompt as well as prompt?"), | |
], | |
"text" | |
) | |
if __name__ == "__main__": | |
ui.launch() |