from fastapi import FastAPI, Request, Form from fastapi.templating import Jinja2Templates import gpt_2_simple as gpt2 from datetime import datetime import csv app = FastAPI() templates = Jinja2Templates(directory="templates") # Download the GPT-2 model if not already downloaded gpt2.download_gpt2(model_name="124M") # Load the GPT-2 model sess = gpt2.start_tf_sess() gpt2.load_gpt2(sess, model_name="124M") async def generate_conversation(prompt): try: conversation = gpt2.generate(sess, prefix=prompt, length=300, temperature=0.7, return_as_list=True)[0] return conversation except Exception as e: return f"Error: {str(e)}" def save_to_csv(prompt, conversation): timestamp = datetime.now().strftime("%Y%m%d%H%M%S") filename = f"info.csv" with open(filename, mode='w', newline='', encoding='utf-8') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(['Prompt', 'Generated Conversation']) csv_writer.writerow([prompt, conversation]) return filename @app.get("/") def read_form(request: Request): return templates.TemplateResponse("index.html", {"request": request}) @app.post("/") async def generate_and_display(request: Request, prompt: str = Form(...)): conversation = await generate_conversation(prompt) csv_filename = save_to_csv(prompt, conversation) return templates.TemplateResponse("index.html", {"request": request, "prompt": prompt, "conversation": conversation, "csv_filename": csv_filename}) if __name__ == "__main__": import uvicorn uvicorn.run(app, host="127.0.0.1", port=8000)