# streamlit_app.py import streamlit as st import requests import csv from datetime import datetime import subprocess # Define Streamlit app st.title("Conversation Generator") @st.cache(allow_output_mutation=True) def generate_conversation(prompt): try: # Introduce slight variations in the prompt prompt_variation = prompt + str(hash(prompt))[:3] # Adjust temperature for more diverse responses response = requests.post('https://api-inference.huggingface.co/models/facebook/blenderbot-400M-distill', json={ "inputs": prompt_variation, "options": {"temperature": 0.8} # Adjust as needed }) conversation = response.json()["generated_text"] return conversation except Exception as e: return f"Error: {str(e)}" def save_to_csv(prompt, conversation): timestamp = datetime.now().strftime("%Y%m%d%H%M%S") filename = f"info.csv" with open(filename, mode='w', newline='', encoding='utf-8') as csv_file: csv_writer = csv.writer(csv_file) csv_writer.writerow(['Prompt', 'Generated Conversation']) csv_writer.writerow([prompt, conversation]) return filename # Load index.html content with open("index.html", "r", encoding="utf-8") as html_file: index_html_content = html_file.read() # Embed HTML content in Streamlit st.markdown(index_html_content, unsafe_allow_html=True) # Define Streamlit UI prompt = st.text_area("Enter prompt:") if st.button("Generate and Display"): conversation = generate_conversation(prompt) csv_filename = save_to_csv(prompt, conversation) st.write("Generated Conversation:") st.write(conversation) st.write("CSV file saved:", csv_filename) if st.button("Run AAMain.py"): try: subprocess.run(["python", "AAmain.py"]) st.success("AAmain.py process started successfully.") except Exception as e: st.error(f"Error: {str(e)}")