thealper2 commited on
Commit
d52de7f
·
verified ·
1 Parent(s): a5157cb

Upload 3 files

Browse files
Files changed (2) hide show
  1. Dockerfile +8 -0
  2. app.py +5 -5
Dockerfile CHANGED
@@ -22,6 +22,14 @@ WORKDIR $HOME/app
22
 
23
  # Copy the current directory contents into the container at $HOME/app setting the owner to the user
24
  COPY --chown=user . $HOME/app
 
 
 
 
25
 
 
 
 
 
26
  # Start the FastAPI app on port 7860, the default port expected by Spaces
27
  CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
 
22
 
23
  # Copy the current directory contents into the container at $HOME/app setting the owner to the user
24
  COPY --chown=user . $HOME/app
25
+
26
+ # Copy additional directories from your local machine into the container
27
+ COPY --chown=user ./aspect_extraction_model $HOME/app/aspect_extraction_model
28
+ COPY --chown=user ./aspect_extraction_tokenizer $HOME/app/aspect_extraction_tokenizer
29
 
30
+ COPY --chown=user ./aspect_sentiment_model $HOME/app/aspect_sentiment_model
31
+ COPY --chown=user ./aspect_sentiment_tokenizer $HOME/app/aspect_sentiment_tokenizer
32
+
33
+
34
  # Start the FastAPI app on port 7860, the default port expected by Spaces
35
  CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
app.py CHANGED
@@ -114,11 +114,11 @@ class AspectSentimentPipeline(Pipeline):
114
 
115
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
116
 
117
- aspect_extraction_model = BertForTokenClassification.from_pretrained("thealper2/aspect-extraction-model")
118
- aspect_extraction_tokenizer = BertTokenizerFast.from_pretrained("thealper2/aspect-extraction-model")
119
 
120
- aspect_sentiment_model = BertForSequenceClassification.from_pretrained("thealper2/aspect-sentiment-model")
121
- aspect_sentiment_tokenizer = BertTokenizer.from_pretrained("thealper2/aspect-sentiment-model")
122
 
123
  pipeline = AspectSentimentPipeline(
124
  aspect_extraction_model=aspect_extraction_model,
@@ -144,4 +144,4 @@ async def predict(item: Item):
144
 
145
 
146
  if __name__=="__main__":
147
- uvicorn.run(app, host="0.0.0.0", port=8000)
 
114
 
115
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
116
 
117
+ aspect_extraction_model = BertForTokenClassification.from_pretrained("./aspect_extraction_model")
118
+ aspect_extraction_tokenizer = BertTokenizerFast.from_pretrained("./aspect_extraction_tokenizer")
119
 
120
+ aspect_sentiment_model = BertForSequenceClassification.from_pretrained("./aspect_sentiment_model")
121
+ aspect_sentiment_tokenizer = BertTokenizer.from_pretrained("./aspect_sentiment_tokenizer")
122
 
123
  pipeline = AspectSentimentPipeline(
124
  aspect_extraction_model=aspect_extraction_model,
 
144
 
145
 
146
  if __name__=="__main__":
147
+ uvicorn.run(app, host="0.0.0.0", port=8000)