Spaces:
Sleeping
Sleeping
Alper Karaca
commited on
Commit
·
873b671
1
Parent(s):
9d8b1b7
Initial commit
Browse files- Dockerfile +27 -0
- app.py +147 -0
- requirements.txt +7 -0
Dockerfile
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Use the official Python 3.10 image
|
2 |
+
FROM python:3.10
|
3 |
+
|
4 |
+
# Set the working directory to /code
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
# Copy the current directory contents into the container at /code
|
8 |
+
COPY ./requirements.txt /code/requirements.txt
|
9 |
+
|
10 |
+
# Install requirements.txt
|
11 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
12 |
+
|
13 |
+
# Set up a new user named "user" with user ID 1000
|
14 |
+
RUN useradd -m -u 1000 user
|
15 |
+
# Switch to the "user" user
|
16 |
+
USER user
|
17 |
+
# Set home to the user's home directory
|
18 |
+
ENV HOME=/home/user PATH=/home/user/.local/bin:$PATH
|
19 |
+
|
20 |
+
# Set the working directory to the user's home directory
|
21 |
+
WORKDIR $HOME/app
|
22 |
+
|
23 |
+
# Copy the current directory contents into the container at $HOME/app setting the owner to the user
|
24 |
+
COPY --chown=user . $HOME/app
|
25 |
+
|
26 |
+
# Start the FastAPI app on port 7860, the default port expected by Spaces
|
27 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
|
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi.middleware.cors import CORSMiddleware
|
2 |
+
import json
|
3 |
+
import torch
|
4 |
+
from transformers import BertTokenizerFast, BertTokenizer, BertForTokenClassification, BertForSequenceClassification, Pipeline
|
5 |
+
from nltk import sent_tokenize
|
6 |
+
import uvicorn
|
7 |
+
from fastapi import FastAPI
|
8 |
+
from pydantic import BaseModel, Field
|
9 |
+
|
10 |
+
class AspectSentimentPipeline(Pipeline):
|
11 |
+
def __init__(self, aspect_extraction_model, aspect_extraction_tokenizer, aspect_sentiment_model, aspect_sentiment_tokenizer, device):
|
12 |
+
super().__init__(aspect_extraction_model, aspect_extraction_tokenizer)
|
13 |
+
self.aspect_extraction_model = aspect_extraction_model
|
14 |
+
self.aspect_extraction_tokenizer = aspect_extraction_tokenizer
|
15 |
+
self.aspect_sentiment_model = aspect_sentiment_model
|
16 |
+
self.aspect_sentiment_tokenizer = aspect_sentiment_tokenizer
|
17 |
+
self.device = device
|
18 |
+
|
19 |
+
def _sanitize_parameters(self, **kwargs):
|
20 |
+
return {}, {}, {}
|
21 |
+
|
22 |
+
def preprocess(self, inputs):
|
23 |
+
return sent_tokenize(inputs)
|
24 |
+
|
25 |
+
def _forward(self, sentences):
|
26 |
+
main_results = []
|
27 |
+
main_aspects = []
|
28 |
+
for sentence in sentences:
|
29 |
+
aspects = self.extract_aspects(sentence, self.aspect_extraction_model, self.aspect_extraction_tokenizer, self.device)
|
30 |
+
for aspect in aspects:
|
31 |
+
main_aspects.append(aspect)
|
32 |
+
sentiment = self.predict_sentiment(sentence, aspect)
|
33 |
+
main_results.append({"aspect": aspect, "sentiment": sentiment})
|
34 |
+
|
35 |
+
return {"entity_list": main_aspects, "results": main_results}
|
36 |
+
|
37 |
+
def postprocess(self, model_outputs):
|
38 |
+
return model_outputs
|
39 |
+
|
40 |
+
def predict_sentiment(self, sentence, aspect):
|
41 |
+
inputs = self.aspect_sentiment_tokenizer(aspect, sentence, return_tensors="pt").to(self.device)
|
42 |
+
self.aspect_sentiment_model.to(self.device)
|
43 |
+
self.aspect_sentiment_model.eval()
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
outputs = self.aspect_sentiment_model(**inputs)
|
47 |
+
logits = outputs.logits
|
48 |
+
|
49 |
+
sentiment = torch.argmax(logits, dim=-1).item()
|
50 |
+
sentiment_label = self.aspect_sentiment_model.config.id2label[sentiment]
|
51 |
+
sentiment_id_to_label = {
|
52 |
+
"LABEL_0": "Negative",
|
53 |
+
"LABEL_1": "Neutral",
|
54 |
+
"LABEL_2": "Positive"
|
55 |
+
}
|
56 |
+
|
57 |
+
return sentiment_id_to_label[sentiment_label]
|
58 |
+
|
59 |
+
def align_word_predictions(self, tokens, predictions):
|
60 |
+
aligned_tokens = []
|
61 |
+
aligned_predictions = []
|
62 |
+
for token, prediction in zip(tokens, predictions):
|
63 |
+
if not token.startswith("##"):
|
64 |
+
aligned_tokens.append(token)
|
65 |
+
aligned_predictions.append(prediction)
|
66 |
+
else:
|
67 |
+
aligned_tokens[-1] = aligned_tokens[-1] + token[2:]
|
68 |
+
return aligned_tokens, aligned_predictions
|
69 |
+
|
70 |
+
def extract_aspects(self, review, aspect_extraction_model, aspect_extraction_tokenizer, device):
|
71 |
+
inputs = self.aspect_extraction_tokenizer(review, return_offsets_mapping=True, padding='max_length', truncation=True, max_length=64, return_tensors="pt").to(device)
|
72 |
+
self.aspect_extraction_model.to(device)
|
73 |
+
self.aspect_extraction_model.eval()
|
74 |
+
ids = inputs["input_ids"].to(device)
|
75 |
+
mask = inputs["attention_mask"].to(device)
|
76 |
+
|
77 |
+
with torch.no_grad():
|
78 |
+
outputs = self.aspect_extraction_model(ids, attention_mask=mask)
|
79 |
+
logits = outputs[0]
|
80 |
+
|
81 |
+
active_logits = logits.view(-1, self.aspect_extraction_model.num_labels)
|
82 |
+
flattened_predictions = torch.argmax(active_logits, axis=1)
|
83 |
+
|
84 |
+
tokens = self.aspect_extraction_tokenizer.convert_ids_to_tokens(ids.squeeze().tolist())
|
85 |
+
ids_to_labels = {0: 'O', 1: 'B-A', 2: 'I-A'}
|
86 |
+
token_predictions = [ids_to_labels[i] for i in flattened_predictions.cpu().numpy()]
|
87 |
+
|
88 |
+
filtered_tokens = [token for token in tokens if token not in ["[PAD]", "[CLS]", "[SEP]"]]
|
89 |
+
filtered_predictions = [pred for token, pred in zip(tokens, token_predictions) if token not in ["[PAD]", "[CLS]", "[SEP]"]]
|
90 |
+
|
91 |
+
aligned_tokens, aligned_predictions = self.align_word_predictions(filtered_tokens, filtered_predictions)
|
92 |
+
|
93 |
+
aspects = []
|
94 |
+
current_aspect = []
|
95 |
+
|
96 |
+
for token, prediction in zip(aligned_tokens, aligned_predictions):
|
97 |
+
if prediction == "B-A":
|
98 |
+
if current_aspect:
|
99 |
+
aspects.append(" ".join(current_aspect))
|
100 |
+
current_aspect = []
|
101 |
+
current_aspect.append(token)
|
102 |
+
elif prediction == "I-A":
|
103 |
+
if current_aspect:
|
104 |
+
current_aspect.append(token)
|
105 |
+
else:
|
106 |
+
if current_aspect:
|
107 |
+
aspects.append(" ".join(current_aspect))
|
108 |
+
current_aspect = []
|
109 |
+
|
110 |
+
if current_aspect:
|
111 |
+
aspects.append(" ".join(current_aspect))
|
112 |
+
|
113 |
+
return aspects
|
114 |
+
|
115 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
116 |
+
|
117 |
+
aspect_extraction_model = BertForTokenClassification.from_pretrained("thealper2/aspect-extraction-model")
|
118 |
+
aspect_extraction_tokenizer = BertTokenizerFast.from_pretrained("thealper2/aspect-extraction-model")
|
119 |
+
|
120 |
+
aspect_sentiment_model = BertForSequenceClassification.from_pretrained("thealper2/aspect-sentiment-model")
|
121 |
+
aspect_sentiment_tokenizer = BertTokenizer.from_pretrained("thealper2/aspect-sentiment-model")
|
122 |
+
|
123 |
+
pipeline = AspectSentimentPipeline(
|
124 |
+
aspect_extraction_model=aspect_extraction_model,
|
125 |
+
aspect_extraction_tokenizer=aspect_extraction_tokenizer,
|
126 |
+
aspect_sentiment_model=aspect_sentiment_model,
|
127 |
+
aspect_sentiment_tokenizer=aspect_sentiment_tokenizer,
|
128 |
+
device=device
|
129 |
+
)
|
130 |
+
|
131 |
+
app = FastAPI()
|
132 |
+
|
133 |
+
class Item(BaseModel):
|
134 |
+
text: str = Field(..., example="""Fiber 100mb SuperOnline kullanıcısıyım yaklaşık 2 haftadır @Twitch @Kick_Turkey gibi canlı yayın platformlarında 360p yayın izlerken donmalar yaşıyoruz. Başka hiç bir operatörler bu sorunu yaşamazken ben parasını verip alamadığım hizmeti neden ödeyeyim ? @Turkcell """)
|
135 |
+
|
136 |
+
@app.get("/", tags=["Home"])
|
137 |
+
def api_home():
|
138 |
+
return {"detail": "Welcome to FastAPI!"}
|
139 |
+
|
140 |
+
@app.post("/predict/", response_model=dict)
|
141 |
+
async def predict(item: Item):
|
142 |
+
result = pipeline(item.text)
|
143 |
+
return result
|
144 |
+
|
145 |
+
|
146 |
+
if __name__=="__main__":
|
147 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
requests
|
4 |
+
transformers
|
5 |
+
torch
|
6 |
+
pydantic
|
7 |
+
nltk
|